Resistive switching in metal oxide materials has recently renewed the interest of many researchers due to the many application in non-volatile memory and neuromorphic computing. A memristor or a memristive device in general, is a device behaving as nonlinear resistor with memory which depends on the amount of charges that passes through it. A novel idea of combining the physical resistive switching phenomenon and the circuit-theoretic formalism of memristors was proposed in 2008. The physical mechanism on how resistive switching occurs is still under debate. A physical understanding of the switching phenomenon is of much importance in order to tailor specific properties for memory applications. To investigate the resistive switching in oxide materials, memristive devices were fabricated starting from materials processing: low-pressure chemical vapor deposition of ZnO nanowires (NWs), low-temperature atomic layer deposition (ALD) of TiO2 thin films and micro-pulse ALD of Fe2O3 thin films. The distinct geometry of ZnO NWs makes it possible to investigate the effect of the electrode material, surface states and compliance to the memristive properties. A simpler method of fabricating TiO2-based devices was explored using low-temperature atomic layer deposition. This approach is very promising for device application using photoresist and polymeric substrates without thermal degradation during and after device fabrication. ALD of pure phase Fe2O3 thin films was demonstrated using cyclic micro-pulses. Based on the performance of the fabricated devices, the oxide materials under this study have promising properties for the next-generation memory devices.

Oxide Memristive Devices / Jasmin, Alladin. - (2016). [10.6092/polito/porto/2639136]

Oxide Memristive Devices

JASMIN, ALLADIN
2016

Abstract

Resistive switching in metal oxide materials has recently renewed the interest of many researchers due to the many application in non-volatile memory and neuromorphic computing. A memristor or a memristive device in general, is a device behaving as nonlinear resistor with memory which depends on the amount of charges that passes through it. A novel idea of combining the physical resistive switching phenomenon and the circuit-theoretic formalism of memristors was proposed in 2008. The physical mechanism on how resistive switching occurs is still under debate. A physical understanding of the switching phenomenon is of much importance in order to tailor specific properties for memory applications. To investigate the resistive switching in oxide materials, memristive devices were fabricated starting from materials processing: low-pressure chemical vapor deposition of ZnO nanowires (NWs), low-temperature atomic layer deposition (ALD) of TiO2 thin films and micro-pulse ALD of Fe2O3 thin films. The distinct geometry of ZnO NWs makes it possible to investigate the effect of the electrode material, surface states and compliance to the memristive properties. A simpler method of fabricating TiO2-based devices was explored using low-temperature atomic layer deposition. This approach is very promising for device application using photoresist and polymeric substrates without thermal degradation during and after device fabrication. ALD of pure phase Fe2O3 thin films was demonstrated using cyclic micro-pulses. Based on the performance of the fabricated devices, the oxide materials under this study have promising properties for the next-generation memory devices.
2016
File in questo prodotto:
File Dimensione Formato  
Alladin_Jasmin_PhD_Thesis_2.pdf

accesso aperto

Descrizione: AJasmin_PhD_Dissertation
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2639136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo