Energy is the vital source of life and it plays a key role in development of human society. Any living creature relies on a source of energy to exist. Similarly, machines require power to operate. Starting with Industrial Revolution, the modern life clearly depends on energy. We need energy for almost everything we do in our daily life, including transportation, agriculture, telecommunication, powering industry, heating, cooling and lighting our buildings, powering electric equipment etc. Global energy requirement is set to increase due to many factors such as rapid industrialization, urbanization, population growth, and growing demand for higher living standards. There is a variety of energy resources available on our planet and non-renewable fossil fuels have been the main source of energy ever since the Industrial Revolution. Unfortunately, unsustainable consumption of energy resources and reliance on fossil fuels has led to severe problems such as energy resource scarcity, global climate change and environmental pollution. The building sector compromising homes, public buildings and businesses represent a major share of global energy and resource consumption. Therefore, while buildings provide numerous benefits to society, they also have major environmental impacts. To build and operate buildings, we consume about 40 % of global energy, 25 % of global water, and 40 % of other global resources. Moreover, buildings are involved in producing approximately one third of greenhouse gas emissions. Today, the stress put on the environment by building sector has reached dangerous levels therefore urgent measures are required to approach buildings and to minimize their negative impacts. We can design energy-efficient buildings only when we know where and why energy is needed and how it is used. Most of the energy consumed in buildings is used for heating, cooling, ventilating and lighting the indoor spaces, for sanitary water heating purposes and powering plug-in appliances required for daily life activities. Moreover, on-site renewable energy generation supports building energy efficiency by providing sustainable energy sources for the building energy needs. The production and consumption of energy carriers in buildings occur through the network of interconnected building sub-systems. A change in one energy process affects other energy processes. Thus, the overall building energy efficiency depends on the combined impact of the building with its systems interacting dynamically all among themselves, with building occupants and with outdoor conditions. Therefore, designing buildings for energy efficiency requires paying attention to complex interactions between the exterior environment and the internal conditions separated by building envelope complemented by building systems. In addition to building energy and CO2 emission performance, there are also other criteria for designers to consider for a comprehensive building design. For instance, building energy cost is one of the major cost types during building life span. Therefore, improving building efficiency not only addresses the challenges of global climate change but also high operational costs and consequent economic resource dependency. However, investments in energy efficiency measures can be costly, too. As a result, the economic viability of design options should be analysed carefully during decision-making process and cost-effective design choices needs to be identified. Furthermore, while applying measures to improve building performance, comfort conditions of occupants should not be neglected, as well. Advances in science and technologies introduced many approaches and technological products that can be benefitted in building design. However, it could be rather difficult to select what design strategies to follow and which technologies to implement among many for cost-effective energy efficiency while satisfying equally valued and beneficial objectives including comfort and environmental issues. Even using the state-of-the-art energy technologies can only have limited impact on the overall building performance if the building and system integration is not well explored. Conventional design methods, which are linear and sequential, are inadequate to address the inter-depended nature of buildings. There is a strong need today for new methods that can evaluate the overall building performance from different aspects while treating the building, its systems and surrounding as a whole and provide quantitative insight information for the designers. Therefore, in the current study, we purpose a simulation-based optimization methodology where improving building performance is taken integrally as one-problem and the interactions between building structure, HVAC equipment and building-integrated renewable energy production are simultaneously and dynamically solved through mathematical optimization techniques while looking for a balanced combination of several design options and design objectives for real-life design challenges. The objective of the methodology is to explore cost-effective energy saving options among a considered list of energy efficiency measures, which can provide comfort while limiting harmful environmental impacts in the long term therefore financial, environmental and comfort benefits are considered and assessed together. During the optimization-based search, building architectural features, building envelope features, size and type of HVAC equipment that belong to a pre-designed HVAC system and size and type of considered renewable system alternatives are explored simultaneously together for an optimal combination under given constraints. The developed optimization framework consists of three main modules: the optimizer, the simulator, and a user-created energy efficiency measures database. The responsibility of the optimizer is to control the entire process by implementing the optimization algorithm, to trigger simulation for performance calculation, to assign new values to variables, to calculate objective function, to impose constraints, and to check stopping criteria. The optimizer module is based on GenOpt optimization environment. However, a sub-module was designed, developed and added to optimization structure to enable Genopt to communicate with the user-created database module. Therefore, every time the value of a variable is updated, the technical and financial information of a matching product or system equipment is read from the database, written into simulation model, and fed to the objective formula. The simulator evaluates energy-related performance metrics and functional constraints through dynamic simulation techniques provided by EnergyPlus simulation tool. The database defines and organizes design variables and stores user-collected cost related, technical and non-technical data about the building energy efficiency measures to be tested during the optimization. An updated version of Particle Swarm Optimization with constriction coefficient is used as the optimization algorithm. The study covers multi-dimensional building design aims through a single-objective optimization approach where multi objectives are represented in a ε-Constraint penalty approach. The primary objective is taken as minimization of building global costs due to changes in design variables therefore it includes minimization of costs occur due to operational energy and water consumption together with ownership costs of building materials and building systems. Moreover, a set of penalty functions including equipment capacity, user comfort, CO2 emissions and renewable system payback period are added to the main objective function in the form of constraints to restrict the solution region to user-set design target. Consequently, multi-objective design aims are translated into a single-objective where the penalty functions acts as secondary objectives. The performance of the proposed optimization methodology was evaluated through a case study implementation where different design scenarios were created, optimized and analysed. A hypothetical base-case office building was defined. Three cities located in Turkey namely Istanbul, Ankara and Antalya were selected as building locations. Therefore, the performance of the methodology in different climatic conditions was investigated. An equipment database consists of actual building materials and system equipment commonly used in Turkish construction sector was prepared. In addition, technical and financial data necessary for objective function calculation were collected from the market. The results of the case studies showed that application of the proposed methodology achieved giving climate-appropriate design recommendations, which resulted in major cost reductions and energy savings. One of the most important contributing factors of this thesis is introducing an integrative method where building architectural elements, HVAC system equipment and renewable systems are simultaneously investigated and optimized while interactions between building and systems are being dynamically captured. Moreover, this research is distinctive from previous studies because it makes possible investigating actual market products as energy efficiency design options through its proposed database application and a sub-program that connect optimization engine with the data library. Therefore, application of the methodology can provide support on real-world building design projects and can prevent a mismatch between the optimization recommendations and the available market solutions. Furthermore, another contributing merit of this research is that it achieves formulating competing building design aims in a single objective function, which can still capture multi-dimensions of building design challenge. Global costs are minimized while energy savings are achieved, CO2-equivalent emission is reduced, right-sized equipment are selected, thermal comfort is provided to users and target payback periods of investments are assured. To conclude, the proposed methodology links building energy performance requirements to financial and environmental targets and it provides a promising structure for addressing real life building design challenges through fast and efficient optimization techniques.

A METHODOLOGY FOR ENERGY OPTIMIZATION OF BUILDINGS CONSIDERING SIMULTANEOUSLY BUILDING ENVELOPE HVAC AND RENEWABLE SYSTEM PARAMETERS / Bayraktar, Meltem. - (2015). [10.6092/polito/porto/2637214]

A METHODOLOGY FOR ENERGY OPTIMIZATION OF BUILDINGS CONSIDERING SIMULTANEOUSLY BUILDING ENVELOPE HVAC AND RENEWABLE SYSTEM PARAMETERS

BAYRAKTAR, MELTEM
2015

Abstract

Energy is the vital source of life and it plays a key role in development of human society. Any living creature relies on a source of energy to exist. Similarly, machines require power to operate. Starting with Industrial Revolution, the modern life clearly depends on energy. We need energy for almost everything we do in our daily life, including transportation, agriculture, telecommunication, powering industry, heating, cooling and lighting our buildings, powering electric equipment etc. Global energy requirement is set to increase due to many factors such as rapid industrialization, urbanization, population growth, and growing demand for higher living standards. There is a variety of energy resources available on our planet and non-renewable fossil fuels have been the main source of energy ever since the Industrial Revolution. Unfortunately, unsustainable consumption of energy resources and reliance on fossil fuels has led to severe problems such as energy resource scarcity, global climate change and environmental pollution. The building sector compromising homes, public buildings and businesses represent a major share of global energy and resource consumption. Therefore, while buildings provide numerous benefits to society, they also have major environmental impacts. To build and operate buildings, we consume about 40 % of global energy, 25 % of global water, and 40 % of other global resources. Moreover, buildings are involved in producing approximately one third of greenhouse gas emissions. Today, the stress put on the environment by building sector has reached dangerous levels therefore urgent measures are required to approach buildings and to minimize their negative impacts. We can design energy-efficient buildings only when we know where and why energy is needed and how it is used. Most of the energy consumed in buildings is used for heating, cooling, ventilating and lighting the indoor spaces, for sanitary water heating purposes and powering plug-in appliances required for daily life activities. Moreover, on-site renewable energy generation supports building energy efficiency by providing sustainable energy sources for the building energy needs. The production and consumption of energy carriers in buildings occur through the network of interconnected building sub-systems. A change in one energy process affects other energy processes. Thus, the overall building energy efficiency depends on the combined impact of the building with its systems interacting dynamically all among themselves, with building occupants and with outdoor conditions. Therefore, designing buildings for energy efficiency requires paying attention to complex interactions between the exterior environment and the internal conditions separated by building envelope complemented by building systems. In addition to building energy and CO2 emission performance, there are also other criteria for designers to consider for a comprehensive building design. For instance, building energy cost is one of the major cost types during building life span. Therefore, improving building efficiency not only addresses the challenges of global climate change but also high operational costs and consequent economic resource dependency. However, investments in energy efficiency measures can be costly, too. As a result, the economic viability of design options should be analysed carefully during decision-making process and cost-effective design choices needs to be identified. Furthermore, while applying measures to improve building performance, comfort conditions of occupants should not be neglected, as well. Advances in science and technologies introduced many approaches and technological products that can be benefitted in building design. However, it could be rather difficult to select what design strategies to follow and which technologies to implement among many for cost-effective energy efficiency while satisfying equally valued and beneficial objectives including comfort and environmental issues. Even using the state-of-the-art energy technologies can only have limited impact on the overall building performance if the building and system integration is not well explored. Conventional design methods, which are linear and sequential, are inadequate to address the inter-depended nature of buildings. There is a strong need today for new methods that can evaluate the overall building performance from different aspects while treating the building, its systems and surrounding as a whole and provide quantitative insight information for the designers. Therefore, in the current study, we purpose a simulation-based optimization methodology where improving building performance is taken integrally as one-problem and the interactions between building structure, HVAC equipment and building-integrated renewable energy production are simultaneously and dynamically solved through mathematical optimization techniques while looking for a balanced combination of several design options and design objectives for real-life design challenges. The objective of the methodology is to explore cost-effective energy saving options among a considered list of energy efficiency measures, which can provide comfort while limiting harmful environmental impacts in the long term therefore financial, environmental and comfort benefits are considered and assessed together. During the optimization-based search, building architectural features, building envelope features, size and type of HVAC equipment that belong to a pre-designed HVAC system and size and type of considered renewable system alternatives are explored simultaneously together for an optimal combination under given constraints. The developed optimization framework consists of three main modules: the optimizer, the simulator, and a user-created energy efficiency measures database. The responsibility of the optimizer is to control the entire process by implementing the optimization algorithm, to trigger simulation for performance calculation, to assign new values to variables, to calculate objective function, to impose constraints, and to check stopping criteria. The optimizer module is based on GenOpt optimization environment. However, a sub-module was designed, developed and added to optimization structure to enable Genopt to communicate with the user-created database module. Therefore, every time the value of a variable is updated, the technical and financial information of a matching product or system equipment is read from the database, written into simulation model, and fed to the objective formula. The simulator evaluates energy-related performance metrics and functional constraints through dynamic simulation techniques provided by EnergyPlus simulation tool. The database defines and organizes design variables and stores user-collected cost related, technical and non-technical data about the building energy efficiency measures to be tested during the optimization. An updated version of Particle Swarm Optimization with constriction coefficient is used as the optimization algorithm. The study covers multi-dimensional building design aims through a single-objective optimization approach where multi objectives are represented in a ε-Constraint penalty approach. The primary objective is taken as minimization of building global costs due to changes in design variables therefore it includes minimization of costs occur due to operational energy and water consumption together with ownership costs of building materials and building systems. Moreover, a set of penalty functions including equipment capacity, user comfort, CO2 emissions and renewable system payback period are added to the main objective function in the form of constraints to restrict the solution region to user-set design target. Consequently, multi-objective design aims are translated into a single-objective where the penalty functions acts as secondary objectives. The performance of the proposed optimization methodology was evaluated through a case study implementation where different design scenarios were created, optimized and analysed. A hypothetical base-case office building was defined. Three cities located in Turkey namely Istanbul, Ankara and Antalya were selected as building locations. Therefore, the performance of the methodology in different climatic conditions was investigated. An equipment database consists of actual building materials and system equipment commonly used in Turkish construction sector was prepared. In addition, technical and financial data necessary for objective function calculation were collected from the market. The results of the case studies showed that application of the proposed methodology achieved giving climate-appropriate design recommendations, which resulted in major cost reductions and energy savings. One of the most important contributing factors of this thesis is introducing an integrative method where building architectural elements, HVAC system equipment and renewable systems are simultaneously investigated and optimized while interactions between building and systems are being dynamically captured. Moreover, this research is distinctive from previous studies because it makes possible investigating actual market products as energy efficiency design options through its proposed database application and a sub-program that connect optimization engine with the data library. Therefore, application of the methodology can provide support on real-world building design projects and can prevent a mismatch between the optimization recommendations and the available market solutions. Furthermore, another contributing merit of this research is that it achieves formulating competing building design aims in a single objective function, which can still capture multi-dimensions of building design challenge. Global costs are minimized while energy savings are achieved, CO2-equivalent emission is reduced, right-sized equipment are selected, thermal comfort is provided to users and target payback periods of investments are assured. To conclude, the proposed methodology links building energy performance requirements to financial and environmental targets and it provides a promising structure for addressing real life building design challenges through fast and efficient optimization techniques.
2015
File in questo prodotto:
File Dimensione Formato  
PhDThesis_MBayraktar.pdf

accesso aperto

Descrizione: PhD Thesis by Meltem Bayraktar
Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 8.84 MB
Formato Adobe PDF
8.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2637214
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo