The diffusion of Open Government Data (OGD) in recent years kept a very fast pace. However, evidence from practitioners shows that disclosing data without proper quality control may jeopardize datasets reuse and negatively affect civic participation. Current approaches to the problem in literature lack of a comprehensive theoretical framework. Moreover, most of the evaluations concentrate on open data platforms, rather than on datasets. In this work, we address these two limitations and set up a framework of indicators to measure the quality of Open Government Data on a series of data quality dimensions at most granular level of measurement. We validated the evaluation framework by applying it to compare two cases of Italian OGD datasets: an internationally recognized good example of OGD, with centralized disclosure and extensive data quality controls, and samples of OGD from decentralized data disclosure (municipalities level), with no possibility of extensive quality controls as in the former case, hence with supposed lower quality. Starting from measurements based on the quality framework, we were able to verify the difference in quality: the measures showed a few common acquired good practices and weaknesses, and a set of discriminating factors that pertain to the type of datasets and the overall approach. On the basis of this evaluation, we also provided technical and policy guidelines to overcome the weaknesses observed in the decentralized release policy, addressing specific quality aspects.

Open Data Quality Measurement Framework: Definition and Application to Open Government Data / Vetro', Antonio; Canova, Lorenzo; Torchiano, Marco; Orozco Minotas, Camilo; Iemma, Raimondo; Morando, Federico. - In: GOVERNMENT INFORMATION QUARTERLY. - ISSN 0740-624X. - STAMPA. - 33:2(2016), pp. 325-337. [10.1016/j.giq.2016.02.001]

Open Data Quality Measurement Framework: Definition and Application to Open Government Data

VETRO', ANTONIO;CANOVA, LORENZO;TORCHIANO, MARCO;IEMMA, RAIMONDO;MORANDO, FEDERICO
2016

Abstract

The diffusion of Open Government Data (OGD) in recent years kept a very fast pace. However, evidence from practitioners shows that disclosing data without proper quality control may jeopardize datasets reuse and negatively affect civic participation. Current approaches to the problem in literature lack of a comprehensive theoretical framework. Moreover, most of the evaluations concentrate on open data platforms, rather than on datasets. In this work, we address these two limitations and set up a framework of indicators to measure the quality of Open Government Data on a series of data quality dimensions at most granular level of measurement. We validated the evaluation framework by applying it to compare two cases of Italian OGD datasets: an internationally recognized good example of OGD, with centralized disclosure and extensive data quality controls, and samples of OGD from decentralized data disclosure (municipalities level), with no possibility of extensive quality controls as in the former case, hence with supposed lower quality. Starting from measurements based on the quality framework, we were able to verify the difference in quality: the measures showed a few common acquired good practices and weaknesses, and a set of discriminating factors that pertain to the type of datasets and the overall approach. On the basis of this evaluation, we also provided technical and policy guidelines to overcome the weaknesses observed in the decentralized release policy, addressing specific quality aspects.
File in questo prodotto:
File Dimensione Formato  
2016-giq-odq.pdf

embargo fino al 20/02/2019

Descrizione: postprint
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF Visualizza/Apri
1-s2.0-S0740624X16300132-main.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2631238
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo