The mechanical response of fiber-reinforced concrete (FRC) beams depends on the amount of fibers, and the transition from brittle to ductile behavior in bending is related to a critical value of fiber volume fraction. Such quantity, which is mechanically equivalent to the minimum amount of steel rebars in reinforced concrete beams, can be defined according to the new approach proposed herein. It derives from the application of a general model and from the introduction of the so-called ductility index (DI). When FRC beams show a ductile behavior DI is positive, whereas DI is negative in the case of brittle response. Both the theoretical and experimental results prove the existence of a general linear relationship between DI and the fiber volume fraction. Accordingly, a new design-by-testing procedure can be used to determine the critical value of fiber volume fraction, which corresponds to a ductility index equal to zero.
Fiber volume fraction and ductility index of concrete beams / Fantilli, ALESSANDRO PASQUALE; Chiaia, Bernardino; Gorino, Andrea. - In: CEMENT & CONCRETE COMPOSITES. - ISSN 0958-9465. - 65:(2016), pp. 139-149. [10.1016/j.cemconcomp.2015.10.019]
Fiber volume fraction and ductility index of concrete beams
FANTILLI, ALESSANDRO PASQUALE;CHIAIA, Bernardino;GORINO, ANDREA
2016
Abstract
The mechanical response of fiber-reinforced concrete (FRC) beams depends on the amount of fibers, and the transition from brittle to ductile behavior in bending is related to a critical value of fiber volume fraction. Such quantity, which is mechanically equivalent to the minimum amount of steel rebars in reinforced concrete beams, can be defined according to the new approach proposed herein. It derives from the application of a general model and from the introduction of the so-called ductility index (DI). When FRC beams show a ductile behavior DI is positive, whereas DI is negative in the case of brittle response. Both the theoretical and experimental results prove the existence of a general linear relationship between DI and the fiber volume fraction. Accordingly, a new design-by-testing procedure can be used to determine the critical value of fiber volume fraction, which corresponds to a ductility index equal to zero.File | Dimensione | Formato | |
---|---|---|---|
Fiber volume fraction and ductility index of concrete beams _ Elsevier Enhanced Reader.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
5.75 MB
Formato
Adobe PDF
|
5.75 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2631036
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo