Behaviour of the pile–soil interface is important to correctly predict the response of floating piles in terms of displacement and lateral friction. Regarding energy piles, which couple the structural roles of deep foundations with the principle of shallow geothermal energy, the response of pile–soil interfaces is influenced by seasonal and daily cyclic thermal variations. Accordingly, the goal of this paper is to experimentally investigate the response of the pile–soil interface at different temperatures. This experimental campaign aims to analyse (i) the cyclic mobilization of the shear strength of the soil–pile interface that is induced by thermal deformation of the pile and (ii) the direct influence of temperature variations on the soil and soil–pile interface behaviour. In this study, a direct shear device was developed and calibrated for nonisothermal soil–structure interface testing. It appears that the sand–concrete interface was affected by cyclic degradation but not affected directly by temperature. Conversely, the response of the clay–concrete interface changed at different temperatures, showing an increase of strength with increasing temperature, presumably due to the effects of temperature on clay deformation.

Experimental investigations of the soil-concrete interface: physical mechanisms, cyclic mobilisation and behaviour at different temperatures / DI DONNA, Alice; Ferrari, Alessio; Laloui, Lyesse. - In: CANADIAN GEOTECHNICAL JOURNAL. - ISSN 0008-3674. - 53:(2016). [10.1139/cgj-2015-0294]

Experimental investigations of the soil-concrete interface: physical mechanisms, cyclic mobilisation and behaviour at different temperatures

DI DONNA, ALICE;
2016

Abstract

Behaviour of the pile–soil interface is important to correctly predict the response of floating piles in terms of displacement and lateral friction. Regarding energy piles, which couple the structural roles of deep foundations with the principle of shallow geothermal energy, the response of pile–soil interfaces is influenced by seasonal and daily cyclic thermal variations. Accordingly, the goal of this paper is to experimentally investigate the response of the pile–soil interface at different temperatures. This experimental campaign aims to analyse (i) the cyclic mobilization of the shear strength of the soil–pile interface that is induced by thermal deformation of the pile and (ii) the direct influence of temperature variations on the soil and soil–pile interface behaviour. In this study, a direct shear device was developed and calibrated for nonisothermal soil–structure interface testing. It appears that the sand–concrete interface was affected by cyclic degradation but not affected directly by temperature. Conversely, the response of the clay–concrete interface changed at different temperatures, showing an increase of strength with increasing temperature, presumably due to the effects of temperature on clay deformation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2629294
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo