Three types of fusion reactors, based on DT, DD and DHe fuel cycles, are compared from the first wall neutron-induced radioactivity point of view. Some of the definitions of low-activity, based on hands-on recycling, remote recycling, “U.S.” shallow land burial and deep geological confinement waste management criteria, are discussed. A three-classes rank of low-activity is proposed. The analysis of the induced radioactivity in first-wall steels shows that the long-term activity remains at high levels in DD and DHe cases too. DD and DT first-wall steels can be classified in none of the above-mentioned low-activity classes. Neutron induced radioactivity in some of the main constituting elements for the first-wall varies, when turning from DT to DD or DHe irradiation conditions. This depends on the different ways by which the long-lived radioactive nuclides are produced. Materials selection and low-activation alloys development, in order to minimize activity, will be necessary also for the first walls of fusion reactors based on advanced fuel cycles.

Neutron Activation in First-Wall Materials for Advanced-Fuel Fusion Reactors / Zucchetti, Massimo. - In: FUSION TECHNOLOGY. - ISSN 0748-1896. - STAMPA. - 19:3P2A(1991), pp. 852-856.

Neutron Activation in First-Wall Materials for Advanced-Fuel Fusion Reactors

ZUCCHETTI, MASSIMO
1991

Abstract

Three types of fusion reactors, based on DT, DD and DHe fuel cycles, are compared from the first wall neutron-induced radioactivity point of view. Some of the definitions of low-activity, based on hands-on recycling, remote recycling, “U.S.” shallow land burial and deep geological confinement waste management criteria, are discussed. A three-classes rank of low-activity is proposed. The analysis of the induced radioactivity in first-wall steels shows that the long-term activity remains at high levels in DD and DHe cases too. DD and DT first-wall steels can be classified in none of the above-mentioned low-activity classes. Neutron induced radioactivity in some of the main constituting elements for the first-wall varies, when turning from DT to DD or DHe irradiation conditions. This depends on the different ways by which the long-lived radioactive nuclides are produced. Materials selection and low-activation alloys development, in order to minimize activity, will be necessary also for the first walls of fusion reactors based on advanced fuel cycles.
1991
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2626851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo