BACKGROUND: The advantages of barbed suture for tendon repair could be to eliminate the need for a knot and to better distribute the load throughout the tendon so as to reduce the deformation at the repair site. The purpose of this study was to evaluate the breaking force and the repair site deformation of a new barbed tenorrhaphy technique in an animal model. MATERIALS AND METHODS: Sixty porcine flexor tendons were divided randomly into three groups and repaired with one of the following techniques: a new 4-strand barbed technique using 2/0 polypropylene Quill™ SRS or 2/0 polydioxanone Quill™ SRS and a modified Kessler technique using 3/0 prolene. All tendons underwent mechanical testing to assess the 2-mm gap formation force, the breaking force and the mode of failure. The percentage change in tendon cross-sectional area before and after repair was calculated. RESULTS: The two-sample Student t-test demonstrated a significant increase in 2-mm gap formation force and in breaking force with barbed sutures, independently from suture material, when compared to traditional Kessler suture. Concerning the tendon profile, we registered less bunching at the repair site in the two barbed groups compared with the Kessler group. CONCLUSIONS: This study confirms the promising results achieved in previous ex vivo studies about the use of barbed suture in flexor tendon repair. In our animal model, tenorrhaphy with Quill™ SRS suture guarantees a breaking force of repair that exceeds the 40-50 N suggested as sufficient to initiate early active motion, and a smoother profile at the repair site. LEVEL OF EVIDENCE: Not applicable.

Barbed suture vs conventional tenorrhaphy: biomechanical analysis in an animal model / Clemente, A; Bergamin, F.; Surace, Cecilia; Lepore, E.; Pugno, N.. - In: JOURNAL OF ORTHOPAEDICS AND TRAUMATOLOGY. - ISSN 1590-9921. - STAMPA. - 16:3(2015), pp. 251-257. [10.1007/s10195-014-0333-8]

Barbed suture vs conventional tenorrhaphy: biomechanical analysis in an animal model

SURACE, Cecilia;
2015

Abstract

BACKGROUND: The advantages of barbed suture for tendon repair could be to eliminate the need for a knot and to better distribute the load throughout the tendon so as to reduce the deformation at the repair site. The purpose of this study was to evaluate the breaking force and the repair site deformation of a new barbed tenorrhaphy technique in an animal model. MATERIALS AND METHODS: Sixty porcine flexor tendons were divided randomly into three groups and repaired with one of the following techniques: a new 4-strand barbed technique using 2/0 polypropylene Quill™ SRS or 2/0 polydioxanone Quill™ SRS and a modified Kessler technique using 3/0 prolene. All tendons underwent mechanical testing to assess the 2-mm gap formation force, the breaking force and the mode of failure. The percentage change in tendon cross-sectional area before and after repair was calculated. RESULTS: The two-sample Student t-test demonstrated a significant increase in 2-mm gap formation force and in breaking force with barbed sutures, independently from suture material, when compared to traditional Kessler suture. Concerning the tendon profile, we registered less bunching at the repair site in the two barbed groups compared with the Kessler group. CONCLUSIONS: This study confirms the promising results achieved in previous ex vivo studies about the use of barbed suture in flexor tendon repair. In our animal model, tenorrhaphy with Quill™ SRS suture guarantees a breaking force of repair that exceeds the 40-50 N suggested as sufficient to initiate early active motion, and a smoother profile at the repair site. LEVEL OF EVIDENCE: Not applicable.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2625672
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo