The most challenging issue in performing underground flow simulations in Discrete Fracture Networks (DFN), is to effectively tackle the geometrical difficulties of the problem. In this work we put forward a new application of the Virtual Element Method combined with the Mortar method for domain decomposition: we exploit the flexibility of the VEM in handling polygonal meshes in order to easily construct meshes conforming to the traces on each fracture, and we resort to the mortar approach in order to ``weakly'' impose continuity of the solution on intersecting fractures. The resulting method replaces the need for matching grids between fractures, so that the meshing process can be performed independently for each fracture. Numerical results show optimal convergence and robustness in handling very complex geometries.

A hybrid mortar virtual element method for discrete fracture network simulations / Benedetto, MATIAS FERNANDO; Berrone, Stefano; Borio, Andrea; Pieraccini, Sandra; Scialo', Stefano. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - STAMPA. - 306:(2016), pp. 148-166. [10.1016/j.jcp.2015.11.034]

A hybrid mortar virtual element method for discrete fracture network simulations

BENEDETTO, MATIAS FERNANDO;BERRONE, STEFANO;BORIO, ANDREA;PIERACCINI, SANDRA;SCIALO', STEFANO
2016

Abstract

The most challenging issue in performing underground flow simulations in Discrete Fracture Networks (DFN), is to effectively tackle the geometrical difficulties of the problem. In this work we put forward a new application of the Virtual Element Method combined with the Mortar method for domain decomposition: we exploit the flexibility of the VEM in handling polygonal meshes in order to easily construct meshes conforming to the traces on each fracture, and we resort to the mortar approach in order to ``weakly'' impose continuity of the solution on intersecting fractures. The resulting method replaces the need for matching grids between fractures, so that the meshing process can be performed independently for each fracture. Numerical results show optimal convergence and robustness in handling very complex geometries.
File in questo prodotto:
File Dimensione Formato  
Art-VEM-Mortar.pdf

embargo fino al 24/11/2017

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri
1-s2.0-S0021999115007743-main.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.21 MB
Formato Adobe PDF
3.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2622740
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo