Novel Zn-MCM-41 mesoporous materials with particle diameters ranging from 20 to 120 nm were successfully prepared following a straightforward synthesis route. The structural and textural properties of the solids were characterized by N2-physisorption, X-ray diffraction, 29Si MAS-NMR, TEM and EDX. These results allow evidencing the presence of an ordered mesoporous structure with a very high specific surface area. The insertion of zinc as single site species within the silica framework was investigated using XPS via the Auger parameter in a Wagner plot representation. This is the first time that an in-depth investigation of these types of solids using XPS techniques was performed. The presence of Brønsted and Lewis acidity was elucidated by following in the IR the interaction with ammonia and carbon monoxide. The materials were tested for the conversion of dihydroxyacetone into ethyl lactate with good results both in terms of yield and selectivity and the catalytic activity resulted in excellent agreement with IR and XPS analysis.
High surface area zincosilicates as efficient catalysts for the synthesis of ethyl lactate: an in-depth structural investigation / Collard, Xavier; Louette, Pierre; Fiorilli, SONIA LUCIA; Aprile, Carmela. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9084. - (2015), pp. 26756-26765. [10.1039/c5cp03577e]
High surface area zincosilicates as efficient catalysts for the synthesis of ethyl lactate: an in-depth structural investigation
FIORILLI, SONIA LUCIA;
2015
Abstract
Novel Zn-MCM-41 mesoporous materials with particle diameters ranging from 20 to 120 nm were successfully prepared following a straightforward synthesis route. The structural and textural properties of the solids were characterized by N2-physisorption, X-ray diffraction, 29Si MAS-NMR, TEM and EDX. These results allow evidencing the presence of an ordered mesoporous structure with a very high specific surface area. The insertion of zinc as single site species within the silica framework was investigated using XPS via the Auger parameter in a Wagner plot representation. This is the first time that an in-depth investigation of these types of solids using XPS techniques was performed. The presence of Brønsted and Lewis acidity was elucidated by following in the IR the interaction with ammonia and carbon monoxide. The materials were tested for the conversion of dihydroxyacetone into ethyl lactate with good results both in terms of yield and selectivity and the catalytic activity resulted in excellent agreement with IR and XPS analysis.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2619521
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo