We analyze the Gorenstein locus of the Hilbert scheme of $d$ points on $p n$ i.e., the open subscheme parameterizing zero--dimensional Gorenstein subschemes of $p n$ of degree $d$ d. We give new sufficient criteria for smoothability and smoothness of points of the Gorenstein locus. In particular we prove that this locus is irreducible when $dle 13$ and find its components when $d=14$. The proof is relatively self-contained and it does not rely on a computer algebra system. As a by--product, we give equations of the fourth secant variety to the $d$--th Veronese reembedding of $p n$ for $dge4$.
Irreducibility of the Gorenstein loci of Hilbert schemes via ray families / Casnati, Gianfranco; Notari, Roberto; Jelisiejew, Joachim. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - STAMPA. - 9:7(2015), pp. 1525-1570. [10.2140/ant.2015.9.1525]
Irreducibility of the Gorenstein loci of Hilbert schemes via ray families
CASNATI, GIANFRANCO;
2015
Abstract
We analyze the Gorenstein locus of the Hilbert scheme of $d$ points on $p n$ i.e., the open subscheme parameterizing zero--dimensional Gorenstein subschemes of $p n$ of degree $d$ d. We give new sufficient criteria for smoothability and smoothness of points of the Gorenstein locus. In particular we prove that this locus is irreducible when $dle 13$ and find its components when $d=14$. The proof is relatively self-contained and it does not rely on a computer algebra system. As a by--product, we give equations of the fourth secant variety to the $d$--th Veronese reembedding of $p n$ for $dge4$.File | Dimensione | Formato | |
---|---|---|---|
ant-v9-n7-p02-p.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2618585
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo