In this communication, we offer a summary of our recent and most interesting results regarding the synthesis, physico-chemical and electrochemical characterization of SPEs based on different monomers/oligomers (methacrylic and/or ethylene oxide based) with specific amounts of lithium salt, plasticizers and/or fillers. Profoundly ion conducting (σ > 10–4 S cm–1 at 20 °C), electrochemically stable (> 5 V vs. Li), self-standing, robust and tack-free SPEs are successfully prepared via a rapid and easily up-scalable process including a light induced photo-polymerization step and/or by thermal polymerisation. The crosslinking produced by UV irradiation allows the incorporation of higher amounts of tetraglyme and/or RTIL (e.g., imidazolium, pyrrolidinium) with lithium salt (based on TFSI– anion), leading to a material with remarkable morphological characteristics in terms of homogeneity and mechanical abusability under highly stressful conditions. The lab-scale Li-polymer cells assembled show stable charge/discharge characteristics without any capacity fading at C/5 current regime (> 130 mAh g–1 in LiFePO4/Li configuration and > 150 mAh g–1 in TiO2/Li configuration @ 20 °C exploiting tetraglyme). Noteworthy, the ability to resist the lithium dendrite nucleation and growth is demonstrated by means of galvanostatic polarization studies. The overall performance of the SPEs postulates the possibility of effective implementation in the next generation of safe, durable and high energy density secondary all-solid Li-ion as well as Li-metal polymer batteries working at ambient and/or sub-ambient temperatures.

New Insights in Aging Resistant Lithium Polymer Batteries for Highly Stressful Applications / Nair, JIJEESH RAVI; Porcarelli, Luca; Bella, Federico; Lin, R.; Fantini, S.; Maresca, Giovanna; Moreno, M.; Appetecchi, GIOVANNI BATTISTA; Gerbaldi, Claudio. - STAMPA. - (2015), pp. TU.O16-TU.O16. (Intervento presentato al convegno Giornate dell’Elettrochimica Italiana (GEI 2015) tenutosi a Bertinoro (Italy) nel 20-24 Settembre 2015).

New Insights in Aging Resistant Lithium Polymer Batteries for Highly Stressful Applications

NAIR, JIJEESH RAVI;PORCARELLI, LUCA;BELLA, FEDERICO;MARESCA, GIOVANNA;APPETECCHI, GIOVANNI BATTISTA;GERBALDI, CLAUDIO
2015

Abstract

In this communication, we offer a summary of our recent and most interesting results regarding the synthesis, physico-chemical and electrochemical characterization of SPEs based on different monomers/oligomers (methacrylic and/or ethylene oxide based) with specific amounts of lithium salt, plasticizers and/or fillers. Profoundly ion conducting (σ > 10–4 S cm–1 at 20 °C), electrochemically stable (> 5 V vs. Li), self-standing, robust and tack-free SPEs are successfully prepared via a rapid and easily up-scalable process including a light induced photo-polymerization step and/or by thermal polymerisation. The crosslinking produced by UV irradiation allows the incorporation of higher amounts of tetraglyme and/or RTIL (e.g., imidazolium, pyrrolidinium) with lithium salt (based on TFSI– anion), leading to a material with remarkable morphological characteristics in terms of homogeneity and mechanical abusability under highly stressful conditions. The lab-scale Li-polymer cells assembled show stable charge/discharge characteristics without any capacity fading at C/5 current regime (> 130 mAh g–1 in LiFePO4/Li configuration and > 150 mAh g–1 in TiO2/Li configuration @ 20 °C exploiting tetraglyme). Noteworthy, the ability to resist the lithium dendrite nucleation and growth is demonstrated by means of galvanostatic polarization studies. The overall performance of the SPEs postulates the possibility of effective implementation in the next generation of safe, durable and high energy density secondary all-solid Li-ion as well as Li-metal polymer batteries working at ambient and/or sub-ambient temperatures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2617637
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo