In this paper, we propose a new class of iteratively re-weighted least squares (IRLS) for sparse recovery problems. The proposed methods are inspired by constrained maximum-likelihood estimation under a Gaussian scale mixture (GSM) distribution assumption. In the noise-free setting, we provide sufficient conditions ensuring the convergence of the sequences generated by these algorithms to the set of fixed points of the maps that rule their dynamics and derive conditions verifiable a posteriori for the convergence to a sparse solution. We further prove that these algorithms are quadratically fast in a neighborhood of a sparse solution. We show through numerical experiments that the proposed methods outperform classical IRLS for l_p-minimization with p\in(0,1] in terms of speed and of sparsity-undersampling tradeoff and are robust even in presence of noise. The simplicity and the theoretical guarantees provided in this paper make this class of algorithms an attractive solution for sparse recovery problems.

Gaussian Mixtures Based IRLS for Sparse Recovery With Quadratic Convergence / Ravazzi, Chiara; Magli, Enrico. - In: IEEE TRANSACTIONS ON SIGNAL PROCESSING. - ISSN 1053-587X. - STAMPA. - 63:13(2015), pp. 3474-3489. [10.1109/TSP.2015.2428216]

Gaussian Mixtures Based IRLS for Sparse Recovery With Quadratic Convergence

RAVAZZI, CHIARA;MAGLI, ENRICO
2015

Abstract

In this paper, we propose a new class of iteratively re-weighted least squares (IRLS) for sparse recovery problems. The proposed methods are inspired by constrained maximum-likelihood estimation under a Gaussian scale mixture (GSM) distribution assumption. In the noise-free setting, we provide sufficient conditions ensuring the convergence of the sequences generated by these algorithms to the set of fixed points of the maps that rule their dynamics and derive conditions verifiable a posteriori for the convergence to a sparse solution. We further prove that these algorithms are quadratically fast in a neighborhood of a sparse solution. We show through numerical experiments that the proposed methods outperform classical IRLS for l_p-minimization with p\in(0,1] in terms of speed and of sparsity-undersampling tradeoff and are robust even in presence of noise. The simplicity and the theoretical guarantees provided in this paper make this class of algorithms an attractive solution for sparse recovery problems.
File in questo prodotto:
File Dimensione Formato  
FullText_RavazziTransSP2015.pdf

accesso aperto

Descrizione: postprint - author version
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 753.86 kB
Formato Adobe PDF
753.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2617379
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo