This paper describes an approach to develop and deploy low-cost plasti optical fiber sensors suitable for measuring low concentrations of pollutants in the atmosphere. The sensors are designed by depositing onto the exposed core of a plastic fiber thin films of sensitive compounds via either plasma sputtering or via plasma-enhanced chemical vapor deposition (PECVD). The interaction between the deposited layer and the gas alters the fiber’s capability to transmit the light, so that the sensor can simply be realized with a few centimeters of fiber, an LED and a photodiode. Sensors arranged in this way exhibit several advantages in comparison to electrochemical and optical conventional sensors; in particular, they have an extremely low cost and can be easily designed to have an integral, i.e., cumulative, response. The paper describes the sensor design, the preparation procedure and two examples of sensor prototypes that exploit a cumulative response. One sensor is designed for monitoring indoor atmospheres for cultural heritage applications and the other for detecting the presence of particular gas species inside the RPC (resistive plate chamber) muon detector of the Compact Muon Solenoid (CMS) experiment at CERN in Geneva.
Design and Deployment of Low-Cost Plastic Optical Fiber Sensors for Gas Monitoring / Grassini, Sabrina; Ishtaiwi, Maen; Parvis, Marco; Vallan, Alberto. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 15:(2015), pp. 485-498. [10.3390/s150100485]
Design and Deployment of Low-Cost Plastic Optical Fiber Sensors for Gas Monitoring
GRASSINI, Sabrina;ISHTAIWI, MAEN;PARVIS, Marco;VALLAN, Alberto
2015
Abstract
This paper describes an approach to develop and deploy low-cost plasti optical fiber sensors suitable for measuring low concentrations of pollutants in the atmosphere. The sensors are designed by depositing onto the exposed core of a plastic fiber thin films of sensitive compounds via either plasma sputtering or via plasma-enhanced chemical vapor deposition (PECVD). The interaction between the deposited layer and the gas alters the fiber’s capability to transmit the light, so that the sensor can simply be realized with a few centimeters of fiber, an LED and a photodiode. Sensors arranged in this way exhibit several advantages in comparison to electrochemical and optical conventional sensors; in particular, they have an extremely low cost and can be easily designed to have an integral, i.e., cumulative, response. The paper describes the sensor design, the preparation procedure and two examples of sensor prototypes that exploit a cumulative response. One sensor is designed for monitoring indoor atmospheres for cultural heritage applications and the other for detecting the presence of particular gas species inside the RPC (resistive plate chamber) muon detector of the Compact Muon Solenoid (CMS) experiment at CERN in Geneva.File | Dimensione | Formato | |
---|---|---|---|
MDPI sensors 2015 plasma pof.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2606192
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo