The behaviour of a woven fabric carbon/epoxy composite T-joint (representing a simplified version the T-joint located at the connection between the B-pillar and the longitudinal rocker in a car body structure) is investigated using experimental and numerical methods. Details of the manufacturing process and experimental design factors are considered to understand their influence on the performance of the T-joint structure. The experimental results reveal the influence of manufacturing process and experimental set-up on the load-carrying capacity and failure mode of the T-joint. Numerical simulation accurately predicts the stress distribution and load-carrying capacity of the T-joint obtained from experimental tests. The FEM model, which includes the adhesive interface layers at the edges, convincingly represents the experimentally found stiffness: the error is less than 3%. According to Hashin matrix tension criteria, the first ply failure occurs at 3.746 kN when the Hashin failure index (R) becomes equal to 1. Whereas, in the case of experimental tests, the first ply failure occurs around 3.4 kN, at which force the first load drop is observed.

An Experimental And Finite Element Study Of The Transverse Bending Behavior Of T-Joints In Vehicle Structures / Koricho, G. E.; Belingardi, Giovanni. - In: COMPOSITES. PART B, ENGINEERING. - ISSN 1359-8368. - STAMPA. - (2015), pp. 430-443. [10.1016/j.compositesb.2015.05.002]

An Experimental And Finite Element Study Of The Transverse Bending Behavior Of T-Joints In Vehicle Structures

BELINGARDI, Giovanni
2015

Abstract

The behaviour of a woven fabric carbon/epoxy composite T-joint (representing a simplified version the T-joint located at the connection between the B-pillar and the longitudinal rocker in a car body structure) is investigated using experimental and numerical methods. Details of the manufacturing process and experimental design factors are considered to understand their influence on the performance of the T-joint structure. The experimental results reveal the influence of manufacturing process and experimental set-up on the load-carrying capacity and failure mode of the T-joint. Numerical simulation accurately predicts the stress distribution and load-carrying capacity of the T-joint obtained from experimental tests. The FEM model, which includes the adhesive interface layers at the edges, convincingly represents the experimentally found stiffness: the error is less than 3%. According to Hashin matrix tension criteria, the first ply failure occurs at 3.746 kN when the Hashin failure index (R) becomes equal to 1. Whereas, in the case of experimental tests, the first ply failure occurs around 3.4 kN, at which force the first load drop is observed.
File in questo prodotto:
File Dimensione Formato  
An experimental and finite element study of the transverse bending behaviour of CFRP composite T-joints in vehicle structures.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 5.16 MB
Formato Adobe PDF
5.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2605785
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo