A model-based new procedure for measuring the single electrode–gel–skin impedance (ZEGS) is presented. The method is suitable for monitoring the contact impedance of the electrodes of a large array with limited modifications of the hardware and without removing or disconnecting the array from the amplifier. The procedure is based on multiple measurements between electrode pairs and is particularly suitable for electrode arrays. It has been applied to study the effectiveness of three skin treatments, with respect to no treatment, for reducing the electrode–gel–skin impedance (ZEGS) and noise: (i) rubbing with alcohol; (ii) rubbing with abrasive conductive paste; (iii) stripping with adhesive tape. The complex impedances ZEGS of the individual electrodes were measured by applying this procedure to disposable commercial Ag–AgCl gelled electrode arrays (4 × 1) with a 5 mm2 contact area. The impedance unbalance ΔZ = ZEGS1 − ZEGS2 and the RMS noise (VRMS) were measured between pairs of electrodes. The tissue impedance ZT was also obtained, as a collateral result. Measurements were repeated at t0 = 0 min and at t30 = 30 min from the electrode application. Mixed linear models and linear regression analysis applied to ZEGS, ΔZ and noise VRMS for the skin treatment factor demonstrated (a) that skin rubbing with abrasive conductive paste is more effective in lowering ZEGS, ΔZ and VRMS (p < 0.01) than the other treatments or no treatment, and (b) a statistically significant decrement (p < 0.01), between t0 and t30, of magnitude and phase of ZEGS. Rubbing with abrasive conductive paste significantly decreased the noise VRMS with respect to other treatments or no treatment.

A new method to assess skin treatments for lowering the impedance and noise of individual gelled Ag–AgCl electrodes / G., Piervirgili; F., Petracca; Merletti, Roberto. - In: PHYSIOLOGICAL MEASUREMENT. - ISSN 0967-3334. - 35:(2014), pp. 2101-2118. [10.1088/0967-3334/35/10/2101]

A new method to assess skin treatments for lowering the impedance and noise of individual gelled Ag–AgCl electrodes

MERLETTI, Roberto
2014

Abstract

A model-based new procedure for measuring the single electrode–gel–skin impedance (ZEGS) is presented. The method is suitable for monitoring the contact impedance of the electrodes of a large array with limited modifications of the hardware and without removing or disconnecting the array from the amplifier. The procedure is based on multiple measurements between electrode pairs and is particularly suitable for electrode arrays. It has been applied to study the effectiveness of three skin treatments, with respect to no treatment, for reducing the electrode–gel–skin impedance (ZEGS) and noise: (i) rubbing with alcohol; (ii) rubbing with abrasive conductive paste; (iii) stripping with adhesive tape. The complex impedances ZEGS of the individual electrodes were measured by applying this procedure to disposable commercial Ag–AgCl gelled electrode arrays (4 × 1) with a 5 mm2 contact area. The impedance unbalance ΔZ = ZEGS1 − ZEGS2 and the RMS noise (VRMS) were measured between pairs of electrodes. The tissue impedance ZT was also obtained, as a collateral result. Measurements were repeated at t0 = 0 min and at t30 = 30 min from the electrode application. Mixed linear models and linear regression analysis applied to ZEGS, ΔZ and noise VRMS for the skin treatment factor demonstrated (a) that skin rubbing with abrasive conductive paste is more effective in lowering ZEGS, ΔZ and VRMS (p < 0.01) than the other treatments or no treatment, and (b) a statistically significant decrement (p < 0.01), between t0 and t30, of magnitude and phase of ZEGS. Rubbing with abrasive conductive paste significantly decreased the noise VRMS with respect to other treatments or no treatment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2604974
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo