The main purpose of this study was to provide a three-dimensional numerical model, which would allow the tunnel lining behaviour and the displacement field surrounding the tunnel to be evaluated. Most of the processes that occur during mechanized excavation have been simulated in this model. The influence of the lining joint pattern, including segmental lining joints and their connections, has in particular been taken into consideration. The impact of the processes during mechanized excavation, such as the grouting pressure and the jacking forces in the structural forces induced in the tunnel lining, has been presented. These values depend on the tunnel advancement. However, a negligible influence of the joint pattern on the ground displacement field surrounding the tunnel has been observed. Generally, a variation in the structural forces in successive rings along the tunnel axis has been found in a staggered segmental lining, indicating the necessity of simulating the joints in the tunnel lining and using a full three-dimensional numerical model to obtain an accurate estimation. In addition, the considerable influence of the coupling effect between successive rings on the lining behaviour has been highlighted.

Three-dimensional numerical simulation for mechanized tunnelling in soft ground: The influence of the joint pattern / Do, N. A.; Dias, D.; Oreste, Pierpaolo; Djeran Maigre, I.. - In: ACTA GEOTECHNICA. - ISSN 1861-1125. - STAMPA. - 9:4(2014), pp. 673-694. [10.1007/s11440-013-0279-7]

Three-dimensional numerical simulation for mechanized tunnelling in soft ground: The influence of the joint pattern

ORESTE, PIERPAOLO;
2014

Abstract

The main purpose of this study was to provide a three-dimensional numerical model, which would allow the tunnel lining behaviour and the displacement field surrounding the tunnel to be evaluated. Most of the processes that occur during mechanized excavation have been simulated in this model. The influence of the lining joint pattern, including segmental lining joints and their connections, has in particular been taken into consideration. The impact of the processes during mechanized excavation, such as the grouting pressure and the jacking forces in the structural forces induced in the tunnel lining, has been presented. These values depend on the tunnel advancement. However, a negligible influence of the joint pattern on the ground displacement field surrounding the tunnel has been observed. Generally, a variation in the structural forces in successive rings along the tunnel axis has been found in a staggered segmental lining, indicating the necessity of simulating the joints in the tunnel lining and using a full three-dimensional numerical model to obtain an accurate estimation. In addition, the considerable influence of the coupling effect between successive rings on the lining behaviour has been highlighted.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2601557
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo