We introduce a new reparametrization technique for convex-valued functions of bounded variation. By means of this technique we are able to reduce discontinuous BV sweeping processes to the Lipschitz continuous case by using only tools from measure theory. In particular, from the regular case we deduce existence, continuous dependence, and convergence of the catching-up algorithm.
Sweeping processes and rate independence / Recupero, Vincenzo. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - STAMPA. - 23:3(2016), pp. 921-946.
Sweeping processes and rate independence
RECUPERO, VINCENZO
2016
Abstract
We introduce a new reparametrization technique for convex-valued functions of bounded variation. By means of this technique we are able to reduce discontinuous BV sweeping processes to the Lipschitz continuous case by using only tools from measure theory. In particular, from the regular case we deduce existence, continuous dependence, and convergence of the catching-up algorithm.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2601156
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo