In the design and fabrication process of electronic equipment, there are many unkown parameters which significantly affect the product performance. Some uncertainties are due to manufacturing process fluctuations, while others due to the environment such as operating temperature, voltage, and various ambient aging stressors. It is desirable to consider these uncertainties to ensure product performance, improve yield, and reduce design cost. Since direct electromagnetic compatibility measurements impact on both cost and time-to-market, there has been a growing demand for the availability of tools enabling the simulation of electrical and electronic equipment with the inclusion of the effects of system uncertainties. In this framework, the assessment of device response is no longer regarded as deterministic but as a random process. It is traditionally analyzed using the Monte Carlo or other sampling-based methods. The drawback of the above methods is large number of required samples to converge, which are time-consuming for practical applications. As an alternative, the inherent worst-case approaches such as interval analysis directly provide an estimation of the true bounds of the responses. However, such approaches might provide unnecessarily strict margins, which are very unlikely to occur. A recent technique, affine arithmetic, advances the interval based methods by means of handling correlated intervals. However, it still leads to over-conservatism due to the inability of considering probability information. The objective of this thesis is to improve the accuracy of the affine arithmetic and broaden its application in frequency-domain analysis. We first extend the existing literature results to the efficient time-domain analysis of lumped circuits considering the uncertainties. Then we provide an extension of the basic affine arithmetic to the frequency-domain simulation of circuits. Classical tools for circuit analysis are used within a modified affine framework accounting for complex algebra and uncertainty interval partitioning for the accurate and efficient computation of the worst case bounds of the responses of both lumped and distributed circuits. The performance of the proposed approach is investigated through extensive simulations in several case studies. The simulation results are compared with the Monte Carlo method in terms of both simulation time and accuracy.

Worst-Case Analysis of Electrical and Electronic Equipment via Affine Arithmetic / Ding, Tongyu. - (2015). [10.6092/polito/porto/2594556]

Worst-Case Analysis of Electrical and Electronic Equipment via Affine Arithmetic

DING, TONGYU
2015

Abstract

In the design and fabrication process of electronic equipment, there are many unkown parameters which significantly affect the product performance. Some uncertainties are due to manufacturing process fluctuations, while others due to the environment such as operating temperature, voltage, and various ambient aging stressors. It is desirable to consider these uncertainties to ensure product performance, improve yield, and reduce design cost. Since direct electromagnetic compatibility measurements impact on both cost and time-to-market, there has been a growing demand for the availability of tools enabling the simulation of electrical and electronic equipment with the inclusion of the effects of system uncertainties. In this framework, the assessment of device response is no longer regarded as deterministic but as a random process. It is traditionally analyzed using the Monte Carlo or other sampling-based methods. The drawback of the above methods is large number of required samples to converge, which are time-consuming for practical applications. As an alternative, the inherent worst-case approaches such as interval analysis directly provide an estimation of the true bounds of the responses. However, such approaches might provide unnecessarily strict margins, which are very unlikely to occur. A recent technique, affine arithmetic, advances the interval based methods by means of handling correlated intervals. However, it still leads to over-conservatism due to the inability of considering probability information. The objective of this thesis is to improve the accuracy of the affine arithmetic and broaden its application in frequency-domain analysis. We first extend the existing literature results to the efficient time-domain analysis of lumped circuits considering the uncertainties. Then we provide an extension of the basic affine arithmetic to the frequency-domain simulation of circuits. Classical tools for circuit analysis are used within a modified affine framework accounting for complex algebra and uncertainty interval partitioning for the accurate and efficient computation of the worst case bounds of the responses of both lumped and distributed circuits. The performance of the proposed approach is investigated through extensive simulations in several case studies. The simulation results are compared with the Monte Carlo method in terms of both simulation time and accuracy.
2015
File in questo prodotto:
File Dimensione Formato  
PhD Thesis-2015-Tongyu Ding.pdf

Open Access dal 06/03/2015

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2594556
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo