This thesis reports about the sputter deposition and characterization of ZnO nanomaterials both in the form of dense and sponge-like thin films. It is shown that high-quality ZnO thin films can be successfully grown on both hard and flexible conductive substrates, with the final aim of proving that their piezoelectric and electrical properties can be successfully exploited in the fabrication of piezoelectric-based nanosensors and nanoactuators. To further state the versatility of ZnO thin films, both spin coated and sputtered dense ZnO thin films were used as seed layers for promoting the growth of well-aligned ZnO nanowires. A strong relationship between the kind of seed layer, i.e., sputtered or spin-coated, and the final NWs morphology, surface chemistry and thus wettability was noticed. In particular NWs grown on sputtered seed layers showed a superhydrophobic behavior, ideal for self-cleaning, anti-fogging or microfluidic devices. In contrast, on spin coated seed layers, highly hydrophilic NWs were obtained, being suitable for further surface functionalization with enhanced adsorption properties towards biological agents or dye for imaging, diagnostic, optical or photovoltaic applications. Finally, the sponge-like morphology is further exploited for the synthesis and characterization of Mn- and Sb- doped, sponge-like ZnO films. The presence of Mn dopant resulted in a high resistance contribution. On the contrary, typical ferroelectric switching phenomena were observed in the Sb-doped ZnO films, showing the presence of hysteretical polarization loops.

Synthesis and characterization of piezoelectric thin films as functional materials for sensing / Laurenti, Marco. - (2015). [10.6092/polito/porto/2591162]

Synthesis and characterization of piezoelectric thin films as functional materials for sensing

LAURENTI, MARCO
2015

Abstract

This thesis reports about the sputter deposition and characterization of ZnO nanomaterials both in the form of dense and sponge-like thin films. It is shown that high-quality ZnO thin films can be successfully grown on both hard and flexible conductive substrates, with the final aim of proving that their piezoelectric and electrical properties can be successfully exploited in the fabrication of piezoelectric-based nanosensors and nanoactuators. To further state the versatility of ZnO thin films, both spin coated and sputtered dense ZnO thin films were used as seed layers for promoting the growth of well-aligned ZnO nanowires. A strong relationship between the kind of seed layer, i.e., sputtered or spin-coated, and the final NWs morphology, surface chemistry and thus wettability was noticed. In particular NWs grown on sputtered seed layers showed a superhydrophobic behavior, ideal for self-cleaning, anti-fogging or microfluidic devices. In contrast, on spin coated seed layers, highly hydrophilic NWs were obtained, being suitable for further surface functionalization with enhanced adsorption properties towards biological agents or dye for imaging, diagnostic, optical or photovoltaic applications. Finally, the sponge-like morphology is further exploited for the synthesis and characterization of Mn- and Sb- doped, sponge-like ZnO films. The presence of Mn dopant resulted in a high resistance contribution. On the contrary, typical ferroelectric switching phenomena were observed in the Sb-doped ZnO films, showing the presence of hysteretical polarization loops.
2015
File in questo prodotto:
File Dimensione Formato  
Tesi PhD Laurenti.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 4.99 MB
Formato Adobe PDF
4.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2591162
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo