This paper proposes a direct flux vector control strategy with no need for regulators tuning, suitable for permanent-magnet (PM) synchronous machine drives. The controller operates in stator flux coordinates and calculates the inverter reference voltages in a model-based fashion, taking advantage of a novel equation for the explicit evaluation of the torque angle error. The inverter current and voltage limits are exploited in a parameter-independent way. The method segregates the machine parameters into a single block, to make it very easy to switch from one machine to another. Experimental results are reported for a PM-assisted synchronous reluctance motor drive example, characterized by significant saturation and cross-saturation. State-of-the-art control techniques such as current vector control and non-model-based direct flux vector control are also considered, for the sake of comparison, in simulations and experiments.
Model Based, Direct Flux Vector Control of Permanent Magnet Synchronous Motor Drives / Boazzo, Barbara; Pellegrino, GIAN - MARIO LUIGI. - In: IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. - ISSN 0093-9994. - STAMPA. - 51:4(2015), pp. 3126-3136. [10.1109/TIA.2015.2399619]
Model Based, Direct Flux Vector Control of Permanent Magnet Synchronous Motor Drives
BOAZZO, BARBARA;PELLEGRINO, GIAN - MARIO LUIGI
2015
Abstract
This paper proposes a direct flux vector control strategy with no need for regulators tuning, suitable for permanent-magnet (PM) synchronous machine drives. The controller operates in stator flux coordinates and calculates the inverter reference voltages in a model-based fashion, taking advantage of a novel equation for the explicit evaluation of the torque angle error. The inverter current and voltage limits are exploited in a parameter-independent way. The method segregates the machine parameters into a single block, to make it very easy to switch from one machine to another. Experimental results are reported for a PM-assisted synchronous reluctance motor drive example, characterized by significant saturation and cross-saturation. State-of-the-art control techniques such as current vector control and non-model-based direct flux vector control are also considered, for the sake of comparison, in simulations and experiments.File | Dimensione | Formato | |
---|---|---|---|
final manuscript.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
07031379.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.91 MB
Formato
Adobe PDF
|
1.91 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2589155
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo