Capability of patterning carbon nanotubes (CNTs) growth is of tantamount importance for a number of applications ranging from thermal to electronic. This article reports on the columnar growth of vertically aligned multiwall carbon nanotubes (VA-MWCNTs) on patterned Silicon (Si) surface. We have developed procedures based on negative as well as positive masking approaches which allows the growth of predetermined MWCNTs patterns. We describe in detail the process steps leading to Si surface patterning. As quoted above, patterns are exploited to grow VA-MWCNTs. We have focused in particular on the growth of CNT pillars by chemical vapor despoition (CVD) technique at 850°C with camphor and ferrocene as carbon precursors and catalyst respectively. Field emission scanning electron microscopy (FESEM) is employed at low magnification to verify the correct patterning, and at high magnification to examine the surface morphology of CNTs pillars. The pillars are up to 2 mm high, their height being tailored through the deposition time. The diameter of each MWCNT is in the range 30–70 nm and the length is up to few hundred micrometers. The small CNT pillars produced, have several electrical and thermal applications. For instance they can be very useful for heat transfer systems as the lower thermal conductivity of fluids can be improved by the inclusion of nanotubes thanks to their peculiar 1-dimensional heat transfer characteristics.
Growth of vertically aligned multiwall carbon nanotubes columns / Shahzad, MUHAMMAD IMRAN; Giorcelli, Mauro; Perrone, Denis; Virga, Alessandro; Shahzad, Nadia; Jagdale, PRAVIN VITTHAL; Cocuzza, Matteo; Tagliaferro, Alberto. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6596. - ELETTRONICO. - 439:012008(2013), pp. 1-8. [10.1088/1742-6596/439/1/012008]
Growth of vertically aligned multiwall carbon nanotubes columns
SHAHZAD, MUHAMMAD IMRAN;GIORCELLI, MAURO;PERRONE, DENIS;VIRGA, ALESSANDRO;SHAHZAD, NADIA;JAGDALE, PRAVIN VITTHAL;COCUZZA, MATTEO;TAGLIAFERRO, Alberto
2013
Abstract
Capability of patterning carbon nanotubes (CNTs) growth is of tantamount importance for a number of applications ranging from thermal to electronic. This article reports on the columnar growth of vertically aligned multiwall carbon nanotubes (VA-MWCNTs) on patterned Silicon (Si) surface. We have developed procedures based on negative as well as positive masking approaches which allows the growth of predetermined MWCNTs patterns. We describe in detail the process steps leading to Si surface patterning. As quoted above, patterns are exploited to grow VA-MWCNTs. We have focused in particular on the growth of CNT pillars by chemical vapor despoition (CVD) technique at 850°C with camphor and ferrocene as carbon precursors and catalyst respectively. Field emission scanning electron microscopy (FESEM) is employed at low magnification to verify the correct patterning, and at high magnification to examine the surface morphology of CNTs pillars. The pillars are up to 2 mm high, their height being tailored through the deposition time. The diameter of each MWCNT is in the range 30–70 nm and the length is up to few hundred micrometers. The small CNT pillars produced, have several electrical and thermal applications. For instance they can be very useful for heat transfer systems as the lower thermal conductivity of fluids can be improved by the inclusion of nanotubes thanks to their peculiar 1-dimensional heat transfer characteristics.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2588517
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo