In the present work, carbon nano/micro-particles obtained by chemical vapor depostion (CVD) process and controlled pyrolysis from polyethylene beads (CNBs) and coconuts choir (CCNs) are presented. These materials were characterized by Raman spectroscopy, thermogravimetry and field emission-scanning electron microscopy (FE-SEM). FE-SEM observations evidenced that CNBs particles proved to be spherical and interconnected, while the CCNs were irregular in shape, as the result of the grinding step. When added to cement paste, up to 0.08 wt%, both materials were effective in increasing the cement matrix compressive strength and toughness. From FE-SEM observations it is evident that the presence of these small particles disturb the propagation of microcracks that have to deviate from their trajectory and have to follow the carbon nano/micro-particles contour. This mechanism increases strongly the fracture surface during the test performed by imposing the monotonic increment of crack opening. The crack and crack pinning are the mechanisms which can explain the increase of toughness in the composite samples.

New cementitious composite building material with enhanced toughness / Ferro, GIUSEPPE ANDREA; Tulliani, Jean Marc Christian; Lopez, Alessandro; Jagdale, PRAVIN VITTHAL. - In: THEORETICAL AND APPLIED FRACTURE MECHANICS. - ISSN 0167-8442. - STAMPA. - in press:(2015), pp. 67-74. [10.1016/j.tafmec.2015.01.005]

New cementitious composite building material with enhanced toughness

FERRO, GIUSEPPE ANDREA;TULLIANI, Jean Marc Christian;LOPEZ, ALESSANDRO;JAGDALE, PRAVIN VITTHAL
2015

Abstract

In the present work, carbon nano/micro-particles obtained by chemical vapor depostion (CVD) process and controlled pyrolysis from polyethylene beads (CNBs) and coconuts choir (CCNs) are presented. These materials were characterized by Raman spectroscopy, thermogravimetry and field emission-scanning electron microscopy (FE-SEM). FE-SEM observations evidenced that CNBs particles proved to be spherical and interconnected, while the CCNs were irregular in shape, as the result of the grinding step. When added to cement paste, up to 0.08 wt%, both materials were effective in increasing the cement matrix compressive strength and toughness. From FE-SEM observations it is evident that the presence of these small particles disturb the propagation of microcracks that have to deviate from their trajectory and have to follow the carbon nano/micro-particles contour. This mechanism increases strongly the fracture surface during the test performed by imposing the monotonic increment of crack opening. The crack and crack pinning are the mechanisms which can explain the increase of toughness in the composite samples.
File in questo prodotto:
File Dimensione Formato  
New cementitious composite building material with enhanced toughness _ Elsevier Enhanced Reader.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 8.9 MB
Formato Adobe PDF
8.9 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2588515
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo