There is an increasing need for automated fault detection tools in buildings. The total energy request in buildings can be significantly reduced by detecting abnormal consumption effectively. Numerous models are used to tackle this problem but either they are very complex and mostly applicable to components level, or they cannot be adopted for different buildings and equipment. In this study a simplified approach to automatically detect anomalies in building energy consumption based on actual recorded data of active electrical power for lighting and total active electrical power of a cluster of eight buildings is presented. The proposed methodology uses statistical pattern recognition techniques and artificial neural ensembling networks coupled with outliers detection methods for fault detection. The results show the usefulness of this data analysis approach in automatic fault detection by reducing the number of false anomalies. The method allows to identify patterns of faults occurring in a cluster of bindings; in this way the energy consumption can be further optimized also through the building management staff by informing occupants of their energy usage and educating them to be proactive in their energy consumption. Finally, in the context of smart buildings, the common detected outliers in the cluster of buildings demonstrate that the management of a smart district can be operated with the whole buildings cluster approach.
Fault detection analysis using data mining techniques for a cluster of smart office buildings / Capozzoli, Alfonso; Lauro, Fiorella; Khan, Imran. - In: EXPERT SYSTEMS WITH APPLICATIONS. - ISSN 0957-4174. - ELETTRONICO. - 42:9(2015), pp. 4324-4338. [10.1016/j.eswa.2015.01.010]
Fault detection analysis using data mining techniques for a cluster of smart office buildings
CAPOZZOLI, ALFONSO;LAURO, FIORELLA;KHAN, IMRAN
2015
Abstract
There is an increasing need for automated fault detection tools in buildings. The total energy request in buildings can be significantly reduced by detecting abnormal consumption effectively. Numerous models are used to tackle this problem but either they are very complex and mostly applicable to components level, or they cannot be adopted for different buildings and equipment. In this study a simplified approach to automatically detect anomalies in building energy consumption based on actual recorded data of active electrical power for lighting and total active electrical power of a cluster of eight buildings is presented. The proposed methodology uses statistical pattern recognition techniques and artificial neural ensembling networks coupled with outliers detection methods for fault detection. The results show the usefulness of this data analysis approach in automatic fault detection by reducing the number of false anomalies. The method allows to identify patterns of faults occurring in a cluster of bindings; in this way the energy consumption can be further optimized also through the building management staff by informing occupants of their energy usage and educating them to be proactive in their energy consumption. Finally, in the context of smart buildings, the common detected outliers in the cluster of buildings demonstrate that the management of a smart district can be operated with the whole buildings cluster approach.File | Dimensione | Formato | |
---|---|---|---|
Fault detection analysis.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.33 MB
Formato
Adobe PDF
|
4.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2588490
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo