We consider a class of linear Schrödinger equations in R^d, with analytic symbols. We prove a global-in-time integral representation for the corresponding propagator as a generalized Gabor multiplier with a window analytic and decaying exponentially at infinity, which is transported by the Hamiltonian flow. We then provide three applications of the above result: the exponential sparsity in phase space of the corresponding propagator with respect to Gabor wave packets, a wave packet characterization of Fourier integral operators with analytic phases and symbols, and the propagation of analytic singularities.
Wave packet analysis of Schroedinger equations in analytic functions spaces / Elena, Cordero; Nicola, Fabio; Luigi, Rodino. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 278:(2015), pp. 182-209. [10.1016/j.aim.2015.03.014]
Wave packet analysis of Schroedinger equations in analytic functions spaces
NICOLA, FABIO;
2015
Abstract
We consider a class of linear Schrödinger equations in R^d, with analytic symbols. We prove a global-in-time integral representation for the corresponding propagator as a generalized Gabor multiplier with a window analytic and decaying exponentially at infinity, which is transported by the Hamiltonian flow. We then provide three applications of the above result: the exponential sparsity in phase space of the corresponding propagator with respect to Gabor wave packets, a wave packet characterization of Fourier integral operators with analytic phases and symbols, and the propagation of analytic singularities.File | Dimensione | Formato | |
---|---|---|---|
AIM2015-revised.pdf
Open Access dal 16/04/2017
Descrizione: Postprint
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
407.86 kB
Formato
Adobe PDF
|
407.86 kB | Adobe PDF | Visualizza/Apri |
AIM2015-editoriale.pdf
non disponibili
Descrizione: Postprint editoriale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
524.53 kB
Formato
Adobe PDF
|
524.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2586754