Surface-wave (SW) techniques are mainly used to retrieve 1D velocity models and are therefore characterized by a 1D approach, which might prove unsatisfactory when relevant 2D effects are present in the investigated subsurface. In the case of sharp and sudden lateral heterogeneities in the subsurface, a strategy to tackle this limitation is to estimate the location of the discontinuities and to separately process seismic traces belonging to quasi-1D subsurface portions. We have addressed our attention to methods aimed at locating discontinuities by identifying anomalies in SW propagation and attenuation. The considered methods are the autospectrum computation and the attenuation analysis of Rayleigh waves (AARW). These methods were developed for purposes and/or scales of analysis that are different from those of this work, which aims at detecting and characterizing sharp subvertical discontinuities in the shallow subsurface. We applied both methods to two data sets, synthetic data from a finite-element method simulation and a field data set acquired over a fault system, both presenting an abrupt lateral variation perpendicularly crossing the acquisition line. We also extended the AARW method to the detection of sharp discontinuities from large and multifold data sets and we tested these novel procedures on the field case. The two methods are proven to be effective for the detection of the discontinuity, by portraying propagation phenomena linked to the presence of the heterogeneity, such as the interference between incident and reflected wavetrains, and energy concentration as well as subsequent decay at the fault location. The procedures we developed for the processing of multifold seismic data set showed to be reliable tools in locating and characterizing subvertical sharp heterogeneities.
Detection of sharp lateral discontinuities through the analysis of surface-wave propagation / Bergamo, Paolo; Socco, Laura. - In: GEOPHYSICS. - ISSN 0016-8033. - STAMPA. - 79:4(2014), pp. 77-90. [10.1190/GEO2013-0314.1]
Detection of sharp lateral discontinuities through the analysis of surface-wave propagation
BERGAMO, PAOLO;SOCCO, LAURA
2014
Abstract
Surface-wave (SW) techniques are mainly used to retrieve 1D velocity models and are therefore characterized by a 1D approach, which might prove unsatisfactory when relevant 2D effects are present in the investigated subsurface. In the case of sharp and sudden lateral heterogeneities in the subsurface, a strategy to tackle this limitation is to estimate the location of the discontinuities and to separately process seismic traces belonging to quasi-1D subsurface portions. We have addressed our attention to methods aimed at locating discontinuities by identifying anomalies in SW propagation and attenuation. The considered methods are the autospectrum computation and the attenuation analysis of Rayleigh waves (AARW). These methods were developed for purposes and/or scales of analysis that are different from those of this work, which aims at detecting and characterizing sharp subvertical discontinuities in the shallow subsurface. We applied both methods to two data sets, synthetic data from a finite-element method simulation and a field data set acquired over a fault system, both presenting an abrupt lateral variation perpendicularly crossing the acquisition line. We also extended the AARW method to the detection of sharp discontinuities from large and multifold data sets and we tested these novel procedures on the field case. The two methods are proven to be effective for the detection of the discontinuity, by portraying propagation phenomena linked to the presence of the heterogeneity, such as the interference between incident and reflected wavetrains, and energy concentration as well as subsequent decay at the fault location. The procedures we developed for the processing of multifold seismic data set showed to be reliable tools in locating and characterizing subvertical sharp heterogeneities.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2585572
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo