Polymer electrolytes represent the ultimate in terms of desirable properties of energy storage/conversion devices, as they can offer an all-solid-state construction, a wide variety of shapes and sizes, light-weight, low costs, high energy density and safety. Here we present our recent results concerning a novel strategy for preparing efficient polymer membranes which are successfully demonstrated as suitable electrolytes for several energy conversion and storage devices (i.e., Li- and Na-based batteries and DSSCs). Highly ionic conducting polymer electrolytes containing PEO-based functionalities and different components (e.g., Li/Na salts, RTILs, natural biosourced and cellulosic fillers) are successfully prepared via a rapid process and, directly or subsequently, cross-linked via UV irradiation (patent pending, PCT/IT2014/000008). All the prepared materials are thoroughly characterised in terms of their physical, chemical and morphological properties and tested for their electrochemical performances and durability. The UV-curing process on such materials led to the production of elastic and resistant amorphous macromolecular networks. Noticeably increased ionic conductivities are registered (10-3 S cm-1 at RT), along with very stable interfacial and storage stability and wide electrochemical stability windows. The different lab-scale solid-state devices show remarkable performances even at ambient temperature, at the level of those using liquid electrolytes, respect to which demonstrate much greater durability and safety. The obtained findings demonstrate a new, easy and low cost approach to fabricate and tailor-make polymer electrolytes with highly promising prospects for the next generation of advanced flexible energy production and storage devices.
Novel multipurpose polymer electrolytes for smart and efficient energy power sources / Nair J. R.; Gerbaldi C.; Porcarelli L.; Bella F.; Destro M.; Penazzi N.. - ELETTRONICO. - (2014), pp. 1152-1152. ((Intervento presentato al convegno 65th Annual Meeting of the International Society of Electrochemistry tenutosi a Lausanne (Switzerland) nel 31 August - 5 September, 2014.
Titolo: | Novel multipurpose polymer electrolytes for smart and efficient energy power sources | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Abstract: | Polymer electrolytes represent the ultimate in terms of desirable properties of energy storage/conversion devices, as they can offer an all-solid-state construction, a wide variety of shapes and sizes, light-weight, low costs, high energy density and safety. Here we present our recent results concerning a novel strategy for preparing efficient polymer membranes which are successfully demonstrated as suitable electrolytes for several energy conversion and storage devices (i.e., Li- and Na-based batteries and DSSCs). Highly ionic conducting polymer electrolytes containing PEO-based functionalities and different components (e.g., Li/Na salts, RTILs, natural biosourced and cellulosic fillers) are successfully prepared via a rapid process and, directly or subsequently, cross-linked via UV irradiation (patent pending, PCT/IT2014/000008). All the prepared materials are thoroughly characterised in terms of their physical, chemical and morphological properties and tested for their electrochemical performances and durability. The UV-curing process on such materials led to the production of elastic and resistant amorphous macromolecular networks. Noticeably increased ionic conductivities are registered (10-3 S cm-1 at RT), along with very stable interfacial and storage stability and wide electrochemical stability windows. The different lab-scale solid-state devices show remarkable performances even at ambient temperature, at the level of those using liquid electrolytes, respect to which demonstrate much greater durability and safety. The obtained findings demonstrate a new, easy and low cost approach to fabricate and tailor-make polymer electrolytes with highly promising prospects for the next generation of advanced flexible energy production and storage devices. | |
Appare nelle tipologie: | 4.3 Poster |
File in questo prodotto:
http://hdl.handle.net/11583/2563551