We use a relatively recent nonlinear manifold learning technique (diffusion maps) to parameterize low dimensional attracting manifolds arising in the description of detailed chemical kinetics mechanisms. With no a priori knowledge about the shape and dimension of the manifold, such an approach provides a way of solving a reduced (and less stiff) set of equations in terms of automatically detected slow variables. Advantages as well as disadvantages of the approach are discussed.
A manifold learning approach to model reduction in combustion / Chiavazzo, Eliodoro; William C., Gear; Benjamin E., Sonday; Ioannis G., Kevrekidis. - (2013). (Intervento presentato al convegno 4th International Workshop on Model Reduction in Reacting Flows tenutosi a San Francisco (CA, USA) nel 19-21 Giugno 2013).
A manifold learning approach to model reduction in combustion
CHIAVAZZO, ELIODORO;
2013
Abstract
We use a relatively recent nonlinear manifold learning technique (diffusion maps) to parameterize low dimensional attracting manifolds arising in the description of detailed chemical kinetics mechanisms. With no a priori knowledge about the shape and dimension of the manifold, such an approach provides a way of solving a reduced (and less stiff) set of equations in terms of automatically detected slow variables. Advantages as well as disadvantages of the approach are discussed.File | Dimensione | Formato | |
---|---|---|---|
SFrancisco01.pdf
accesso aperto
Tipologia:
Abstract
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
587.7 kB
Formato
Adobe PDF
|
587.7 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2557746
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo