Our primary goal is to provide a rigorous treatment of scattering nonlocality in semiconductor nanostructures. On the one hand, starting from the conventional density-matrix formulation and employing as ideal instrument for the study of the semiclassical limit the well-known Wigner-function picture, we shall perform a fully quantum-mechanical derivation of the space-dependent Boltzmann equation. On the other hand, we shall examine the validity limits of such semiclassical framework, pointing out, in particular, regimes where scattering-nonlocality effects may play a relevant role; to this end we shall supplement our analytical investigation with a number of simulated experiments, discussing and further expanding preliminary studies of scattering-induced quantum diffusion in GaN-based nanomaterials. As for the case of carrier-carrier relaxation in photoexcited semiconductors, our analysis will show the failure of simplified dephasing models in describing phonon-induced scattering nonlocality, pointing out that such limitation is particularly severe for the case of quasielastic dissipation processes.
Scattering nonlocality in quantum charge transport: Application to semiconductor nanostructures / Rosati, Roberto; Rossi, Fausto. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - STAMPA. - 89:(2014), pp. 205415-1-205415-16. [10.1103/PhysRevB.89.205415]
Scattering nonlocality in quantum charge transport: Application to semiconductor nanostructures
ROSATI, ROBERTO;ROSSI, FAUSTO
2014
Abstract
Our primary goal is to provide a rigorous treatment of scattering nonlocality in semiconductor nanostructures. On the one hand, starting from the conventional density-matrix formulation and employing as ideal instrument for the study of the semiclassical limit the well-known Wigner-function picture, we shall perform a fully quantum-mechanical derivation of the space-dependent Boltzmann equation. On the other hand, we shall examine the validity limits of such semiclassical framework, pointing out, in particular, regimes where scattering-nonlocality effects may play a relevant role; to this end we shall supplement our analytical investigation with a number of simulated experiments, discussing and further expanding preliminary studies of scattering-induced quantum diffusion in GaN-based nanomaterials. As for the case of carrier-carrier relaxation in photoexcited semiconductors, our analysis will show the failure of simplified dephasing models in describing phonon-induced scattering nonlocality, pointing out that such limitation is particularly severe for the case of quasielastic dissipation processes.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2553148
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo