A geomechanical and fluid-flow coupled model was developed to simulate natural-fracture network reactivation during hydraulic fracturing treatments in shale gas reservoirs. The fractures were modelled using the continuum approach in a commercial finite-difference code, labeled the "softening ubiquitous joints" model with randomply distributed strength parameters to describe heterogeneity along the fracture plane. The models allow for intersecting fractures to represent realistic scenarios. The permeability values in the fractures are dynamically updated during the simulations together with the reversible tensile opening because of elastic response and irreversible shear opening caused by plastic deformations. The reactivation of the fracture network resulted in hugh permeability along these fracture planes. The developed model can predict microseismic events caused by slip on the fracture planes. The magnitude levels of these microseismic events are comparable with the levels observed in events monitored by use of geophone arrays during hydraulic-fracturing treatments for different shale gas reservoirs.
Natural-Fracture Reactivation in Shale Gas Reservoir and Resulting Microseismicity / Shahid, ARSHAD SHEHZAD AHMAD; Wassing, B. B. T.; Fokker, PETRUS ADRIANUS; Verga, Francesca. - In: JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY. - ISSN 0021-9487. - STAMPA. - 54:6(2015), pp. 450-459. [10.2118/178437-PA]
Natural-Fracture Reactivation in Shale Gas Reservoir and Resulting Microseismicity
SHAHID, ARSHAD SHEHZAD AHMAD;FOKKER, PETRUS ADRIANUS;VERGA, FRANCESCA
2015
Abstract
A geomechanical and fluid-flow coupled model was developed to simulate natural-fracture network reactivation during hydraulic fracturing treatments in shale gas reservoirs. The fractures were modelled using the continuum approach in a commercial finite-difference code, labeled the "softening ubiquitous joints" model with randomply distributed strength parameters to describe heterogeneity along the fracture plane. The models allow for intersecting fractures to represent realistic scenarios. The permeability values in the fractures are dynamically updated during the simulations together with the reversible tensile opening because of elastic response and irreversible shear opening caused by plastic deformations. The reactivation of the fracture network resulted in hugh permeability along these fracture planes. The developed model can predict microseismic events caused by slip on the fracture planes. The magnitude levels of these microseismic events are comparable with the levels observed in events monitored by use of geophone arrays during hydraulic-fracturing treatments for different shale gas reservoirs.File | Dimensione | Formato | |
---|---|---|---|
SPE-178437-PA print.pdf
accesso riservato
Descrizione: Articolo
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2535691
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo