Neural networks are able to extract information from the timing of spikes. Here we provide new results on the behavior of the simplest neuronal model which is able to decode information embedded in temporal spike patterns, the so-called tempotron. Using statistical physics techniques we compute the capacity for the case of sparse, time-discretized input, and 'material' discrete synapses, showing that the device saturates the information theoretic bounds with a statistics of output spikes that is consistent with the statistics of the inputs. We also derive two simple and highly efficient learning algorithms which are able to learn a number of associations which are close to the theoretical limit. The simplest versions of these algorithms correspond to distributed online protocols of interest for neuromorphic devices, and can be adapted to address the more biologically relevant continuous-time version of the classification problem, hopefully allowing the understanding of some aspects of synaptic plasticity.

Theory and learning protocols for the material tempotron model / Baldassi, Carlo; Braunstein, Alfredo; Zecchina, Riccardo. - In: JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT. - ISSN 1742-5468. - ELETTRONICO. - 2013:(2013), p. P12013. [10.1088/1742-5468/2013/12/P12013]

Theory and learning protocols for the material tempotron model

BALDASSI, CARLO;BRAUNSTEIN, ALFREDO;ZECCHINA, RICCARDO
2013

Abstract

Neural networks are able to extract information from the timing of spikes. Here we provide new results on the behavior of the simplest neuronal model which is able to decode information embedded in temporal spike patterns, the so-called tempotron. Using statistical physics techniques we compute the capacity for the case of sparse, time-discretized input, and 'material' discrete synapses, showing that the device saturates the information theoretic bounds with a statistics of output spikes that is consistent with the statistics of the inputs. We also derive two simple and highly efficient learning algorithms which are able to learn a number of associations which are close to the theoretical limit. The simplest versions of these algorithms correspond to distributed online protocols of interest for neuromorphic devices, and can be adapted to address the more biologically relevant continuous-time version of the classification problem, hopefully allowing the understanding of some aspects of synaptic plasticity.
File in questo prodotto:
File Dimensione Formato  
1309.0393.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Creative commons
Dimensione 657.26 kB
Formato Adobe PDF
657.26 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2535489
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo