Experimental evidences are reported on the potential of direct metal laser sintering (DMLS) in manufacturing flat and finned heat sinks with a remarkably enhanced convective heat transfer coefficient, taking advantage of artificial roughness in fully turbulent regime. To the best of our knowledge, this is the first study where artificial roughness by DMLS is investigated in terms of such thermal performances. On rough flat surfaces, we experience a peak of 73 % for the convective heat transfer enhancement (63 % on average) compared to smooth surfaces. On rough (single) finned surfaces, the best performance is found to be 40 % (35 % on average) compared to smooth finned surface. These results refer to setups with Reynolds numbers (based on heated edge) within 3,500 < Re_L < 16,500 (corresponding to 35,000 < Re_D < 165,000 in terms of Reynolds number based on hydraulic diameter). Experimental data are obtained by a purposely developed sensor with maximum and mean estimated tolerance intervals of +/- 7.0 % and +/- 5.4 %, respectively. Following the idea by Gioia et al. [Phys. Rev. Lett. 96 (2006) 044502], we propose that heat transfer close to the wall is dominated by eddies with size depending on the roughness dimensions and the viscous (Kolmogorov) length scale. An excellent agreement between the experimental data and the proposed analytical model is finally demonstrated.
Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering / Ventola, Luigi; Francesco, Robotti; Dialameh, Masoud; Calignano, Flaviana; Manfredi, DIEGO GIOVANNI; Chiavazzo, Eliodoro; Asinari, Pietro. - In: INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER. - ISSN 0017-9310. - STAMPA. - 75:(2014), pp. 58-74. [10.1016/j.ijheatmasstransfer.2014.03.037]
Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering
VENTOLA, LUIGI;DIALAMEH, MASOUD;CALIGNANO, FLAVIANA;MANFREDI, DIEGO GIOVANNI;CHIAVAZZO, ELIODORO;ASINARI, PIETRO
2014
Abstract
Experimental evidences are reported on the potential of direct metal laser sintering (DMLS) in manufacturing flat and finned heat sinks with a remarkably enhanced convective heat transfer coefficient, taking advantage of artificial roughness in fully turbulent regime. To the best of our knowledge, this is the first study where artificial roughness by DMLS is investigated in terms of such thermal performances. On rough flat surfaces, we experience a peak of 73 % for the convective heat transfer enhancement (63 % on average) compared to smooth surfaces. On rough (single) finned surfaces, the best performance is found to be 40 % (35 % on average) compared to smooth finned surface. These results refer to setups with Reynolds numbers (based on heated edge) within 3,500 < Re_L < 16,500 (corresponding to 35,000 < Re_D < 165,000 in terms of Reynolds number based on hydraulic diameter). Experimental data are obtained by a purposely developed sensor with maximum and mean estimated tolerance intervals of +/- 7.0 % and +/- 5.4 %, respectively. Following the idea by Gioia et al. [Phys. Rev. Lett. 96 (2006) 044502], we propose that heat transfer close to the wall is dominated by eddies with size depending on the roughness dimensions and the viscous (Kolmogorov) length scale. An excellent agreement between the experimental data and the proposed analytical model is finally demonstrated.File | Dimensione | Formato | |
---|---|---|---|
Roughness-preprint.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2535098
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo