Shape sensing, i.e., reconstruction of the displacement field of a structure from surface-measured strains, has relevant implications for the monitoring, control and actuation of smart structures. The inverse finite element method (iFEM) is a shape-sensing methodology shown to be fast, accurate and robust. This paper aims to demonstrate that the recently presented iFEM for beam and frame structures is reliable when experimentally measured strains are used as input data. The theoretical framework of the methodology is first reviewed. Timoshenko beam theory is adopted, including stretching, bending, transverse shear and torsion deformation modes. The variational statement and its discretization with C0-continuous inverse elements are briefly recalled. The three-dimensional displacement field of the beam structure is reconstructed under the condition that least-squares compatibility is guaranteed between the measured strains and those interpolated within the inverse elements. The experimental setup is then described. A thin-walled cantilevered beam is subjected to different static and dynamic loads. Measured surface strains are used as input data for shape sensing at first with a single inverse element. For the same test cases, convergence is also investigated using an increasing number of inverse elements. The iFEM-recovered deflections and twist rotations are then compared with those measured experimentally. The accuracy, convergence and robustness of the iFEM with respect to unavoidable measurement errors, due to strain sensor locations, measurement systems and geometry imperfections, are demonstrated for both static and dynamic loadings.
An inverse finite element method for beam shape sensing: theoretical framework and experimental validation / Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano Corrado; DI SCIUVA, Marco; Alexander, Tessler. - In: SMART MATERIALS AND STRUCTURES. - ISSN 0964-1726. - ELETTRONICO. - 23:4(2014), p. 045027. [10.1088/0964-1726/23/4/045027]
An inverse finite element method for beam shape sensing: theoretical framework and experimental validation
GHERLONE, Marco;CERRACCHIO, PRISCILLA;MATTONE, Massimiliano Corrado;DI SCIUVA, Marco;
2014
Abstract
Shape sensing, i.e., reconstruction of the displacement field of a structure from surface-measured strains, has relevant implications for the monitoring, control and actuation of smart structures. The inverse finite element method (iFEM) is a shape-sensing methodology shown to be fast, accurate and robust. This paper aims to demonstrate that the recently presented iFEM for beam and frame structures is reliable when experimentally measured strains are used as input data. The theoretical framework of the methodology is first reviewed. Timoshenko beam theory is adopted, including stretching, bending, transverse shear and torsion deformation modes. The variational statement and its discretization with C0-continuous inverse elements are briefly recalled. The three-dimensional displacement field of the beam structure is reconstructed under the condition that least-squares compatibility is guaranteed between the measured strains and those interpolated within the inverse elements. The experimental setup is then described. A thin-walled cantilevered beam is subjected to different static and dynamic loads. Measured surface strains are used as input data for shape sensing at first with a single inverse element. For the same test cases, convergence is also investigated using an increasing number of inverse elements. The iFEM-recovered deflections and twist rotations are then compared with those measured experimentally. The accuracy, convergence and robustness of the iFEM with respect to unavoidable measurement errors, due to strain sensor locations, measurement systems and geometry imperfections, are demonstrated for both static and dynamic loadings.File | Dimensione | Formato | |
---|---|---|---|
2534688.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2534688
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo