Electrodynamic suspension exploits repulsive forces due to eddy currents to produce positive stiffness by passive means, without violating the Earnshaw stability criterion. Systems employing this principle to levitate a rotor radial and/or axial degrees of freedom are called electrodynamic bearings (EDBs). Since the eddy currents can be induced either by using alternating current supplied electromagnets or by the relative motion between a conductor and a constant magnetic field, the research on EDBs has developed many different configurations. The present paper reviews the literature on electrodynamic passive magnetic bearings to analyze the evolution of this technology toward completely passive, stable, rotor levitation, and to compare the EDBs performance with other common magnetic bearing technologies. Radial and axial EDB technologies are reviewed attempting to create an organized connection between the works and to discuss some critical issues that still preclude the use of EDBs in industrial applications.

Progress on electrodynamic passive magnetic bearings for rotor levitation / GIRARDELLO DETONI, Joaquim. - In: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART C, JOURNAL OF MECHANICAL ENGINEERING SCIENCE. - ISSN 0954-4062. - ELETTRONICO. - 228:10(2013), pp. 1829-1844. [10.1177/0954406213511798]

Progress on electrodynamic passive magnetic bearings for rotor levitation

GIRARDELLO DETONI, JOAQUIM
2013

Abstract

Electrodynamic suspension exploits repulsive forces due to eddy currents to produce positive stiffness by passive means, without violating the Earnshaw stability criterion. Systems employing this principle to levitate a rotor radial and/or axial degrees of freedom are called electrodynamic bearings (EDBs). Since the eddy currents can be induced either by using alternating current supplied electromagnets or by the relative motion between a conductor and a constant magnetic field, the research on EDBs has developed many different configurations. The present paper reviews the literature on electrodynamic passive magnetic bearings to analyze the evolution of this technology toward completely passive, stable, rotor levitation, and to compare the EDBs performance with other common magnetic bearing technologies. Radial and axial EDB technologies are reviewed attempting to create an organized connection between the works and to discuss some critical issues that still preclude the use of EDBs in industrial applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2528289
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo