The aim of this paper is the determination of the equivalent anisotropy properties of polycrystalline magnetic materials, modeled as an assembly of monocrystalline grains with a stochastic spatial distribution of easy axes. The theory of !-convergence is here adopted to homogenize the anisotropic contribution in the energy functional and derive the equivalent anisotropy properties. The reliability of this approach is investigated focusing on the computation of the static hysteresis loops of polycrystalline magnetic thin films, starting from the numerical integration of the Landau–Lifshitz–Gilbert equation.
DETERMINATION OF THE EQUIVALENT ANISOTROPY PROPERTIES OF POLYCRYSTALLINE MAGNETIC MATERIALS: THEORETICAL ASPECTS AND NUMERICAL ANALYSIS / Bottauscio, O.; CHIADO' PIAT, Valeria; Eleuteri, M.; Lussardi, L.; Manzin, A.. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 23:7(2013), pp. 1217-1233. [10.1142/S0218202513500073]
DETERMINATION OF THE EQUIVALENT ANISOTROPY PROPERTIES OF POLYCRYSTALLINE MAGNETIC MATERIALS: THEORETICAL ASPECTS AND NUMERICAL ANALYSIS
CHIADO' PIAT, Valeria;L. LUSSARDI;
2013
Abstract
The aim of this paper is the determination of the equivalent anisotropy properties of polycrystalline magnetic materials, modeled as an assembly of monocrystalline grains with a stochastic spatial distribution of easy axes. The theory of !-convergence is here adopted to homogenize the anisotropic contribution in the energy functional and derive the equivalent anisotropy properties. The reliability of this approach is investigated focusing on the computation of the static hysteresis loops of polycrystalline magnetic thin films, starting from the numerical integration of the Landau–Lifshitz–Gilbert equation.File | Dimensione | Formato | |
---|---|---|---|
BCELM19sep.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2522375
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo