We derive a family of Hardy-Rellich type inequalities in $H^2(\Omega)\cap H^1_0 (\Omega)$ involving the scalar product between Hessian matrices. The constants found are optimal and the existence of a boundary remainder term is discussed.
A family of Hardy-Rellich type inequalities involving the L^2-norm of the Hessian matrices / Berchio, Elvise - In: Geometric Properties for Parabolic and Elliptic PDE'sSTAMPA. - [s.l] : Springer INdAM Series, 2013. - ISBN 9788847028418. - pp. 17-33 [10.1007/978-88-470-2841-8]
A family of Hardy-Rellich type inequalities involving the L^2-norm of the Hessian matrices
BERCHIO, ELVISE
2013
Abstract
We derive a family of Hardy-Rellich type inequalities in $H^2(\Omega)\cap H^1_0 (\Omega)$ involving the scalar product between Hessian matrices. The constants found are optimal and the existence of a boundary remainder term is discussed.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2521511
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo