The main part of this paper is a shorter version of a joint work with P. Sj\"ogren. Let G be the Lie group R^2\rtimes R^+ endowed with the Riemannian symmetric space structure. Let X_0, X_1, X_2 be a distinguished basis of left-invariant vector fields of the Lie algebra of $G$ and define the Laplacian \Delta=-(X_0^2+X_1^2+X_2^2). We recall the definition and the main properties of the atomic Hardy space H^1_{at} on the group G. Then we introduce a maximal Hardy space H^1_{max,h} on G defined in terms of the maximal function associated with the heat kernel of the Laplacian \Delta. We show that the atomic Hardy space is strictly included in the heat maximal Hardy space. In the last part of the paper, which is new, we consider the maximal Hardy space H^1_{max,p} defined in terms of the Poisson kernel of the Laplacian \Delta and show that it strictly contains the atomic Hardy space H^1_{at}.

Atomic and maximal Hardy spaces on a Lie group of exponential growth / Vallarino, Maria. - STAMPA. - 3:(2013), pp. 409-424. [10.1007/978-88-470-2853-1]

Atomic and maximal Hardy spaces on a Lie group of exponential growth

VALLARINO, MARIA
2013

Abstract

The main part of this paper is a shorter version of a joint work with P. Sj\"ogren. Let G be the Lie group R^2\rtimes R^+ endowed with the Riemannian symmetric space structure. Let X_0, X_1, X_2 be a distinguished basis of left-invariant vector fields of the Lie algebra of $G$ and define the Laplacian \Delta=-(X_0^2+X_1^2+X_2^2). We recall the definition and the main properties of the atomic Hardy space H^1_{at} on the group G. Then we introduce a maximal Hardy space H^1_{max,h} on G defined in terms of the maximal function associated with the heat kernel of the Laplacian \Delta. We show that the atomic Hardy space is strictly included in the heat maximal Hardy space. In the last part of the paper, which is new, we consider the maximal Hardy space H^1_{max,p} defined in terms of the Poisson kernel of the Laplacian \Delta and show that it strictly contains the atomic Hardy space H^1_{at}.
9788847028524
Trends in Harmonic Analysis Springer INdAM Series Volume 3
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2520095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo