Hashimoto's thyroiditis is the most common type of inflammation of the thyroid gland, and accurate diagnosis of Hashimoto's thyroiditis would be helpful to better manage the disease process and predict thyroid failure. Most of the published computer-based techniques that use ultrasound thyroid images for Hashimoto's thyroiditis diagnosis are limited by lack of procedure standardization because individual investigators use various initial ultrasound settings. This article presents a computer-aided diagnostic technique that uses grayscale features and classifiers to provide a more objective and reproducible classification of normal and Hashimoto's thyroiditis-affected cases. In this paradigm, we extracted grayscale features based on entropy, Gabor wavelet, moments, image texture, and higher order spectra from the 100 normal and 100 Hashimoto's thyroiditis-affected ultrasound thyroid images. Significant features were selected using t-test. The resulting feature vectors were used to build the following three classifiers using tenfold stratified cross validation technique: support vector machine, k-nearest neighbor, and radial basis probabilistic neural network. Our results show that a combination of 12 features coupled with support vector machine classifier with the polynomial kernel of order 1 and linear kernel gives the highest accuracy of 80%, sensitivity of 76%, specificity of 84%, and positive predictive value of 83.3% for the detection of Hashimoto's thyroiditis. The proposed computer-aided diagnostic system uses novel features that have not yet been explored for Hashimoto's thyroiditis diagnosis. Even though the accuracy is only 80%, the presented preliminary results are encouraging to warrant analysis of more such powerful features on larger databases.

Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification / Acharya, Ur; Vinitha Sree, S; Mookiah, Mr; Yantri, R; Molinari, Filippo; Zieleźnik, W; Małyszek Tumidajewicz, J; Stępień, B; Bardales, Rh; Witkowska, A; Suri, Js. - In: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART H, JOURNAL OF ENGINEERING IN MEDICINE. - ISSN 0954-4119. - 227:7(2013), pp. 788-798. [10.1177/0954411913483637]

Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification.

MOLINARI, FILIPPO;
2013

Abstract

Hashimoto's thyroiditis is the most common type of inflammation of the thyroid gland, and accurate diagnosis of Hashimoto's thyroiditis would be helpful to better manage the disease process and predict thyroid failure. Most of the published computer-based techniques that use ultrasound thyroid images for Hashimoto's thyroiditis diagnosis are limited by lack of procedure standardization because individual investigators use various initial ultrasound settings. This article presents a computer-aided diagnostic technique that uses grayscale features and classifiers to provide a more objective and reproducible classification of normal and Hashimoto's thyroiditis-affected cases. In this paradigm, we extracted grayscale features based on entropy, Gabor wavelet, moments, image texture, and higher order spectra from the 100 normal and 100 Hashimoto's thyroiditis-affected ultrasound thyroid images. Significant features were selected using t-test. The resulting feature vectors were used to build the following three classifiers using tenfold stratified cross validation technique: support vector machine, k-nearest neighbor, and radial basis probabilistic neural network. Our results show that a combination of 12 features coupled with support vector machine classifier with the polynomial kernel of order 1 and linear kernel gives the highest accuracy of 80%, sensitivity of 76%, specificity of 84%, and positive predictive value of 83.3% for the detection of Hashimoto's thyroiditis. The proposed computer-aided diagnostic system uses novel features that have not yet been explored for Hashimoto's thyroiditis diagnosis. Even though the accuracy is only 80%, the presented preliminary results are encouraging to warrant analysis of more such powerful features on larger databases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2519701
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo