A numerical study is presented where tailoring optimization and stitching are applied to improve the structural performances of sandwich plates undergoing static and blast pulse pressure loading. The purpose is to recover the critical interlaminar stresses at the interface with the core and contemporaneously keep maximal the flexural stiffness. Optimized distributions of the stiffness properties for the faces are obtained solving an extremal problem whose target is the minimization of the energy due to transverse shear and bending stresses under spatial variation of the stiffness properties, along with the maximization of the energy due to in-plane stresses. The contribution of stitching is computed through 3-D finite element analysis and it is incorporated as modified elastic moduli into the refined, hierarchic zig-zag model employed as structural model to carry out the analysis accurately accounting for the layerwise effects of the out-of-plane transverse shear and transverse normal stresses and deformations. Approximate solutions giving the ply fibre orientation at any point (compatible with the current manufacturing technologies) are considered in the numerical applications. The numerical results show that stitched sandwiches incorporating optimized low-cost glass-fibre plies can achieve the same bending stiffness as sandwiches with uniform stiffness carbon fibre faces, with a consistent reduction of critical out-of-plane stresses. The amplitude of vibrations under blast pulse loading can be consistently reduced with a proper choice of the curvilinear paths of fibres incorporated in the faces.

RESPONSE OF SANDWICHES UNDERGOING STATIC AND BLAST PULSE LOADING WITH TAILORING OPTIMIZATION AND STITCHING / Icardi, Ugo; Sola, Federico. - In: AEROSPACE SCIENCE AND TECHNOLOGY. - ISSN 1270-9638. - STAMPA. - 32:1(2014), pp. 293-301. [10.1016/j.ast.2013.11.001]

RESPONSE OF SANDWICHES UNDERGOING STATIC AND BLAST PULSE LOADING WITH TAILORING OPTIMIZATION AND STITCHING

ICARDI, Ugo;SOLA, FEDERICO
2014

Abstract

A numerical study is presented where tailoring optimization and stitching are applied to improve the structural performances of sandwich plates undergoing static and blast pulse pressure loading. The purpose is to recover the critical interlaminar stresses at the interface with the core and contemporaneously keep maximal the flexural stiffness. Optimized distributions of the stiffness properties for the faces are obtained solving an extremal problem whose target is the minimization of the energy due to transverse shear and bending stresses under spatial variation of the stiffness properties, along with the maximization of the energy due to in-plane stresses. The contribution of stitching is computed through 3-D finite element analysis and it is incorporated as modified elastic moduli into the refined, hierarchic zig-zag model employed as structural model to carry out the analysis accurately accounting for the layerwise effects of the out-of-plane transverse shear and transverse normal stresses and deformations. Approximate solutions giving the ply fibre orientation at any point (compatible with the current manufacturing technologies) are considered in the numerical applications. The numerical results show that stitched sandwiches incorporating optimized low-cost glass-fibre plies can achieve the same bending stiffness as sandwiches with uniform stiffness carbon fibre faces, with a consistent reduction of critical out-of-plane stresses. The amplitude of vibrations under blast pulse loading can be consistently reduced with a proper choice of the curvilinear paths of fibres incorporated in the faces.
File in questo prodotto:
File Dimensione Formato  
2519074.pdf

accesso aperto

Descrizione: Borsa DIMEAS
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 242.2 kB
Formato Adobe PDF
242.2 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2519074
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo