Diamagnetic levitation principle opens to promising solutions for innovative powerless and low stiffness suspension applicable to many technological fields. The peculiarities of diamagnetic suspension make this design solution very attractive for some applications such as microdevices and energy harvesters. Low stiffness and powerless functioning are the most appreciable characteristics of this kind of suspension, despite their force-displacement curve is generally hard to predict and strongly nonlinear. The modeling complexity resides in the preliminary prediction of magnetic field distribution and in the calculation of diamagnetic forces as function of the levitation height. This work introduces a modeling approach for calculating the levitation height of a parameterized diamagnetic suspension composed of a ground of permanent magnets and a levitating mass made of pyrolytic graphite. The numerical discretization approach is used and the predicted values are compared with experiments providing good agreement between results.

3D numerical modeling and experimental validation of diamagnetic levitated suspension in the static field / DE PASQUALE, Giorgio; Iamoni, Sonia; Soma', Aurelio. - In: INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES. - ISSN 0020-7403. - STAMPA. - 68:(2013), pp. 56-66. [10.1016/j.ijmecsci.2012.12.018]

3D numerical modeling and experimental validation of diamagnetic levitated suspension in the static field

DE PASQUALE, GIORGIO;IAMONI, SONIA;SOMA', AURELIO
2013

Abstract

Diamagnetic levitation principle opens to promising solutions for innovative powerless and low stiffness suspension applicable to many technological fields. The peculiarities of diamagnetic suspension make this design solution very attractive for some applications such as microdevices and energy harvesters. Low stiffness and powerless functioning are the most appreciable characteristics of this kind of suspension, despite their force-displacement curve is generally hard to predict and strongly nonlinear. The modeling complexity resides in the preliminary prediction of magnetic field distribution and in the calculation of diamagnetic forces as function of the levitation height. This work introduces a modeling approach for calculating the levitation height of a parameterized diamagnetic suspension composed of a ground of permanent magnets and a levitating mass made of pyrolytic graphite. The numerical discretization approach is used and the predicted values are compared with experiments providing good agreement between results.
File in questo prodotto:
File Dimensione Formato  
2517518.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2517518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo