In everyday life, face similarity is an important kinship clue. Computer algorithms able to infer kinship from pairs of face images could be applied in forensics, image retrieval and annotation, and historical studies. So far, little work in this area has been presented, and only one study, using a small set of low quality images, tackles the problem of identifying siblings pairs. The purpose of our paper is to present a comprehensive investigation on this subject, aimed at understanding which are, on the average, the most relevant facial features, how effective can be computer algorithms for detecting siblings pairs, and if they can outperform human evaluation. To avoid problems due to low quality pictures and uncontrolled imaging conditions, as for the heterogeneous datasets collected for previous researches, we prepared a database of high quality pictures of sibling pairs, shot in controlled conditions and including frontal, profile, expressionless and smiling faces. Then, we constructed various classifiers of image pairs using different types of facial data, based on various geometric, textural and holistic features. The classifiers were first tested separately, and then the most significant facial data, selected with a two stage feature selection algorithm were combined into a unique classifier. The discriminating ability of the automatic classifier combining features of different nature has been found to outperform that of a panel of human raters. We also show the good generalization capabilities of the algorithm by applying the classifier, in a cross-database experiment, to a low quality database of images collected from the Internet.

Detecting Siblings in Image Pairs / FIGUEIREDO VIEIRA, Tiago; Bottino, ANDREA GIUSEPPE; Laurentini, Aldo; DE SIMONE, Matteo. - In: THE VISUAL COMPUTER. - ISSN 0178-2789. - STAMPA. - 30:12(2014), pp. 1333-1345. [10.1007/s00371-013-0884-3]

Detecting Siblings in Image Pairs

FIGUEIREDO VIEIRA, TIAGO;BOTTINO, ANDREA GIUSEPPE;LAURENTINI, ALDO;DE SIMONE, MATTEO
2014

Abstract

In everyday life, face similarity is an important kinship clue. Computer algorithms able to infer kinship from pairs of face images could be applied in forensics, image retrieval and annotation, and historical studies. So far, little work in this area has been presented, and only one study, using a small set of low quality images, tackles the problem of identifying siblings pairs. The purpose of our paper is to present a comprehensive investigation on this subject, aimed at understanding which are, on the average, the most relevant facial features, how effective can be computer algorithms for detecting siblings pairs, and if they can outperform human evaluation. To avoid problems due to low quality pictures and uncontrolled imaging conditions, as for the heterogeneous datasets collected for previous researches, we prepared a database of high quality pictures of sibling pairs, shot in controlled conditions and including frontal, profile, expressionless and smiling faces. Then, we constructed various classifiers of image pairs using different types of facial data, based on various geometric, textural and holistic features. The classifiers were first tested separately, and then the most significant facial data, selected with a two stage feature selection algorithm were combined into a unique classifier. The discriminating ability of the automatic classifier combining features of different nature has been found to outperform that of a panel of human raters. We also show the good generalization capabilities of the algorithm by applying the classifier, in a cross-database experiment, to a low quality database of images collected from the Internet.
File in questo prodotto:
File Dimensione Formato  
08. Detecting Siblings in Image Pairs.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2513839