We extend the Horrocks correspondence between vector bundles and cohomology modules on the projective plane to the product of two projective lines. We introduce a set of invariants for a vector bundle on the product of two projective lines, which includes the first cohomology module of the bundle, and prove that there is a one to one correspondence between these sets of invariants and isomorphism classes of vector bundles without line bundle summands.

Horrocks Correspondence on a Quadric Surface / Malaspina, Francesco; A. P., Rao. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - STAMPA. - 169:1(2014), pp. 15-31. [10.1007/s10711-013-9839-0]

Horrocks Correspondence on a Quadric Surface

MALASPINA, FRANCESCO;
2014

Abstract

We extend the Horrocks correspondence between vector bundles and cohomology modules on the projective plane to the product of two projective lines. We introduce a set of invariants for a vector bundle on the product of two projective lines, which includes the first cohomology module of the bundle, and prove that there is a one to one correspondence between these sets of invariants and isomorphism classes of vector bundles without line bundle summands.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2513748
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo