The predictive lossy compression paradigm, which is emerging as an interesting alternative to conventional transform coding techniques, is studied. We first discuss this paradigm and outline the advantages and drawbacks with respect to transform coding. Next, we consider two low-complexity predictors and compare them under equal conditions on a large set of multispectral and hyperspectral images. Besides their rate-distortion performance, we attempt to gain some insight on the “quality” of the prediction residuals, comparing bit-rate and variance, and calculating the kurtosis. The results allow us to outline the directions for improvement of the algorithms, mainly in the treatment of noisy channels and the use of appropriate statistical models for the entropy-coding stage.
Predictor analysis for onboard lossy predictive compression of multispectral and hyperspectral images / Ricci, Marco; Magli, Enrico. - In: JOURNAL OF APPLIED REMOTE SENSING. - ISSN 1931-3195. - 7:(2013), pp. 1-14. [10.1117/1.JRS.7.074591]
Predictor analysis for onboard lossy predictive compression of multispectral and hyperspectral images
RICCI, MARCO;MAGLI, ENRICO
2013
Abstract
The predictive lossy compression paradigm, which is emerging as an interesting alternative to conventional transform coding techniques, is studied. We first discuss this paradigm and outline the advantages and drawbacks with respect to transform coding. Next, we consider two low-complexity predictors and compare them under equal conditions on a large set of multispectral and hyperspectral images. Besides their rate-distortion performance, we attempt to gain some insight on the “quality” of the prediction residuals, comparing bit-rate and variance, and calculating the kurtosis. The results allow us to outline the directions for improvement of the algorithms, mainly in the treatment of noisy channels and the use of appropriate statistical models for the entropy-coding stage.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2513745
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo