Modal analysis is widely used both on single components and mechanical complex assemblies and it is recognized to be a fundamental step on the functional design process. From experimental point of view, a change in a system parameter due to the need of describing a different assembly configuration, can require iterative measurements, and can be quite time consuming. On the other hand, by evaluating the dynamic behaviour of the single component instead of the whole system, it is not straightforward to forecast the general dynamics of the entire assembly: inertia and stiffness couplings give rise to curious dynamic phenomena, namely crossing and veering of eigenvalue loci. Many theoretical studies on eigenvalue curve crossing and curve veering, i.e. the coincidence of two eigenfrequencies or the abrupt divergence of natural frequencies trends, have been carried out in recent years, but only few references on detailed test sessions and practical applications are available. The present paper wants to give a better overview on the change of the dynamic properties of a system by comparing global mode shapes to single component mode shapes. The examined structure is a crank mechanism, made of a crankshaft joined to four connecting rods and four pistons. The chosen control parameter that is responsible of a change in the dynamic properties of the system is the crank angle. Numerical models have been used to compute eigenvalues and eigenvectors of the analysed structure, considering both FEM models and multibody approach. Finally, an original graphical interpretation of the transition from component to system dynamics is presented by means of the MAC index.
Crossing and Veering Phenomena in Crank Mechanism Dynamics / Bonisoli, Elvio; Marcuccio, Gabriele; Rosso, Carlo - In: Topics in Model Validation and Uncertainty Quantification, Volume 5ELETTRONICO. - [s.l] : Springer, 2013. - ISBN 9781461465638. - pp. 175-187 [10.1007/978-1-4614-6564-5_18]
Crossing and Veering Phenomena in Crank Mechanism Dynamics
BONISOLI, Elvio;MARCUCCIO, GABRIELE;ROSSO, CARLO
2013
Abstract
Modal analysis is widely used both on single components and mechanical complex assemblies and it is recognized to be a fundamental step on the functional design process. From experimental point of view, a change in a system parameter due to the need of describing a different assembly configuration, can require iterative measurements, and can be quite time consuming. On the other hand, by evaluating the dynamic behaviour of the single component instead of the whole system, it is not straightforward to forecast the general dynamics of the entire assembly: inertia and stiffness couplings give rise to curious dynamic phenomena, namely crossing and veering of eigenvalue loci. Many theoretical studies on eigenvalue curve crossing and curve veering, i.e. the coincidence of two eigenfrequencies or the abrupt divergence of natural frequencies trends, have been carried out in recent years, but only few references on detailed test sessions and practical applications are available. The present paper wants to give a better overview on the change of the dynamic properties of a system by comparing global mode shapes to single component mode shapes. The examined structure is a crank mechanism, made of a crankshaft joined to four connecting rods and four pistons. The chosen control parameter that is responsible of a change in the dynamic properties of the system is the crank angle. Numerical models have been used to compute eigenvalues and eigenvectors of the analysed structure, considering both FEM models and multibody approach. Finally, an original graphical interpretation of the transition from component to system dynamics is presented by means of the MAC index.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2510279
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo