We prove continuity results for Fourier integral operators with symbols in modulation spaces, acting between modulation spaces. The phase functions belong to a class of non-degenerate generalized quadratic forms that includes Schr¨odinger propagators and pseudodifferential operators. As a byproduct, we obtain a characterization of all exponents p, q, r1, r2, t1, t2 ∈ [1,∞] of modulation spaces such that a symbol in Mp,q(R2d) gives a pseudodifferential operator that is continuous from Mr1,r2 (Rd) into Mt1,t2 (Rd).
Schrodinger-type propagators, pseudodifferential operators and modulation spaces / Elena Cordero; Anita Tabacco; Patrik Wahlberg. - In: JOURNAL OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6107. - ELETTRONICO. - (2013), pp. 375-395. [10.1112/jlms/jdt020]
Titolo: | Schrodinger-type propagators, pseudodifferential operators and modulation spaces | |
Autori: | ||
Data di pubblicazione: | 2013 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1112/jlms/jdt020 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
jlms.jdt020.full.pdf | Articolo | 2. Post-print / Author's Accepted Manuscript | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2509283