The paper describes the design of a readout element, proposed as a radiation monitor, which implements an embedded sensor based on a floating-gate transistor. The paper shows the design of a microelectronic circuit composed of a sensor, an oscillator, a modulator, a transmitter and an integrated antenna. A prototype chip has recently been fabricated and tested exploiting a commercial 180 nm, four metal CMOS technology. Simulation results of the entire behavior of the circuit before submission are presented along with some measurements of the actual chip response. In addition, preliminary tests of the performance of the Ultra-Wide Band transmission via the integrated antenna are summarized. As the complete chip prototype area is less than 1 mm2, the chip fits a large variety of applications, from spot radiation monitoring systems in medicine to punctual measurements of radiation level in High-Energy Physics experiments. A sensitivity of 1 mV/rad was estimated within an absorbed dose range up to 10 krad and a total power consumption of about 165 μW.

A 0.18μm CMOS low-power radiation sensor for asynchronous event-driven UWB wireless transmission / S., Bastianini; Crepaldi, Marco; Demarchi, Danilo; A., Gabrielli; M., Lolli; A., Margotti; G., Villani; Z., Zhang; G., Zoccoli. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - STAMPA. - In Press:(2013). [10.1016/j.nima.2013.05.008]

A 0.18μm CMOS low-power radiation sensor for asynchronous event-driven UWB wireless transmission

CREPALDI, MARCO;DEMARCHI, DANILO;
2013

Abstract

The paper describes the design of a readout element, proposed as a radiation monitor, which implements an embedded sensor based on a floating-gate transistor. The paper shows the design of a microelectronic circuit composed of a sensor, an oscillator, a modulator, a transmitter and an integrated antenna. A prototype chip has recently been fabricated and tested exploiting a commercial 180 nm, four metal CMOS technology. Simulation results of the entire behavior of the circuit before submission are presented along with some measurements of the actual chip response. In addition, preliminary tests of the performance of the Ultra-Wide Band transmission via the integrated antenna are summarized. As the complete chip prototype area is less than 1 mm2, the chip fits a large variety of applications, from spot radiation monitoring systems in medicine to punctual measurements of radiation level in High-Energy Physics experiments. A sensitivity of 1 mV/rad was estimated within an absorbed dose range up to 10 krad and a total power consumption of about 165 μW.
File in questo prodotto:
File Dimensione Formato  
Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment 2013 Bastianini.pdf

non disponibili

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2508083
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo