We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics in a society consisting of two types of agents: regular agents, who update their beliefs according to information that they receive from their social neighbors; and stubborn agents, who never update their opinions and might represent leaders, political parties or media sources attempting to influence the beliefs in the rest of the society. When the society contains stubborn agents with different opinions, the belief dynamics never lead to a consensus (among the regular agents). Instead, beliefs in the society fail to converge almost surely, the belief profile keeps on fluctuating in an ergodic fashion, and it converges in law to a non-degenerate random vector. The structure of the graph describing the social network and the location of the stubborn agents within it shape the opinion dynamics. The expected belief vector is proved to evolve according to an ordinary differential equation coinciding with the Kolmogorov backward equation of a continuous-time Markov chain on the graph with absorbing states corresponding to the stubborn agents, and hence to converge to a harmonic vector, with every regular agent’s value being the weighted average of its neighbors’ values, and boundary conditions corresponding to the stubborn agents’ beliefs. Expected cross-products of the agents’ beliefs allow for a similar characterization in terms of coupled Markov chains on the graph describing the social network. We prove that, in large-scale societies which are highly fluid, meaning that the product of the mixing time of the Markov chain on the graph describing the social network and the relative size of the linkages to stubborn agents vanishes as the population size grows large, a condition of homogeneous influence emerges, whereby the stationary beliefs’ marginal distributions of most of the regular agents have approximately equal first and second moment.
Opinion fluctuations and disagreement in social networks / Acemoglu, D.; Como, Giacomo; Fagnani, Fabio; Ozdaglar, A.. - In: MATHEMATICS OF OPERATIONS RESEARCH. - ISSN 0364-765X. - 38:1(2013), pp. 1-27. [10.1287/moor.1120.0570]
Opinion fluctuations and disagreement in social networks
COMO, GIACOMO;FAGNANI, FABIO;
2013
Abstract
We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics in a society consisting of two types of agents: regular agents, who update their beliefs according to information that they receive from their social neighbors; and stubborn agents, who never update their opinions and might represent leaders, political parties or media sources attempting to influence the beliefs in the rest of the society. When the society contains stubborn agents with different opinions, the belief dynamics never lead to a consensus (among the regular agents). Instead, beliefs in the society fail to converge almost surely, the belief profile keeps on fluctuating in an ergodic fashion, and it converges in law to a non-degenerate random vector. The structure of the graph describing the social network and the location of the stubborn agents within it shape the opinion dynamics. The expected belief vector is proved to evolve according to an ordinary differential equation coinciding with the Kolmogorov backward equation of a continuous-time Markov chain on the graph with absorbing states corresponding to the stubborn agents, and hence to converge to a harmonic vector, with every regular agent’s value being the weighted average of its neighbors’ values, and boundary conditions corresponding to the stubborn agents’ beliefs. Expected cross-products of the agents’ beliefs allow for a similar characterization in terms of coupled Markov chains on the graph describing the social network. We prove that, in large-scale societies which are highly fluid, meaning that the product of the mixing time of the Markov chain on the graph describing the social network and the relative size of the linkages to stubborn agents vanishes as the population size grows large, a condition of homogeneous influence emerges, whereby the stationary beliefs’ marginal distributions of most of the regular agents have approximately equal first and second moment.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2507861
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo