A promising approach to Bayesian classification is based on exploiting frequent patterns, i.e., patterns that frequently occur in the training data set, to estimate the Bayesian probability. Pattern-based Bayesian classification focuses on building and evaluating reliable probability approximations by exploiting a subset of frequent patterns tailored to a given test case. This paper proposes a novel and effective approach to estimate the Bayesian probability. Differently from previous approaches, the Entropy-based Bayesian classifier, namely EnBay, focuses on selecting the minimal set of long and not overlapped patterns that best complies with a conditional-independence model, based on an entropy-based evaluator. Furthermore, the probability approximation is separately tailored to each class. An extensive experimental evaluation, performed on both real and synthetic data sets, shows that EnBay is significantly more accurate than most state-of-the-art classifiers, Bayesian and not.
EnBay: A Novel Pattern-Based Bayesian Classifier / Baralis, ELENA MARIA; Cagliero, Luca; Garza, Paolo. - In: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. - ISSN 1041-4347. - 25:12(2013), pp. 2780-2795. [10.1109/TKDE.2012.197]
EnBay: A Novel Pattern-Based Bayesian Classifier
BARALIS, ELENA MARIA;CAGLIERO, LUCA;GARZA, PAOLO
2013
Abstract
A promising approach to Bayesian classification is based on exploiting frequent patterns, i.e., patterns that frequently occur in the training data set, to estimate the Bayesian probability. Pattern-based Bayesian classification focuses on building and evaluating reliable probability approximations by exploiting a subset of frequent patterns tailored to a given test case. This paper proposes a novel and effective approach to estimate the Bayesian probability. Differently from previous approaches, the Entropy-based Bayesian classifier, namely EnBay, focuses on selecting the minimal set of long and not overlapped patterns that best complies with a conditional-independence model, based on an entropy-based evaluator. Furthermore, the probability approximation is separately tailored to each class. An extensive experimental evaluation, performed on both real and synthetic data sets, shows that EnBay is significantly more accurate than most state-of-the-art classifiers, Bayesian and not.File | Dimensione | Formato | |
---|---|---|---|
2505994_draft.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.67 MB
Formato
Adobe PDF
|
2.67 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2505994
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo