The superconducting-insulator transition is simulated in disordered networks of Josephson junctions with thermally activated Arrhenius-like resistive shunt. By solving the conductance matrix of the network, the transition is reproduced in different experimental conditions by tuning thickness, charge density and disorder degree. In particular, on increasing fluctuations of the parameters entering the Josephson coupling and the Coulomb energy of the junctions, the transition occurs for decreasing values of the critical temperature Tc and increasing values of the activation temperature To. The results of the simulation compare well with recent experiments where the mesoscopic fluctuations of the phase have been suggested as the mechanism underlying the phenomenon of emergent granularity in otherwise homogeneous films. The proposed approach is compared with the results obtained on TiN films and nanopatterned arrays of weak-links, where the superconductor-insulator transition is directly stimulated.
Superconducting-Insulator Transition in Disordered Josephson Junctions Networks / L., Ponta; V., Andreoli; Carbone, ANNA FILOMENA. - In: THE EUROPEAN PHYSICAL JOURNAL. B, CONDENSED MATTER PHYSICS. - ISSN 1434-6028. - 86:(2013). [10.1140/epjb/e2012-30216-x]
Superconducting-Insulator Transition in Disordered Josephson Junctions Networks
CARBONE, ANNA FILOMENA
2013
Abstract
The superconducting-insulator transition is simulated in disordered networks of Josephson junctions with thermally activated Arrhenius-like resistive shunt. By solving the conductance matrix of the network, the transition is reproduced in different experimental conditions by tuning thickness, charge density and disorder degree. In particular, on increasing fluctuations of the parameters entering the Josephson coupling and the Coulomb energy of the junctions, the transition occurs for decreasing values of the critical temperature Tc and increasing values of the activation temperature To. The results of the simulation compare well with recent experiments where the mesoscopic fluctuations of the phase have been suggested as the mechanism underlying the phenomenon of emergent granularity in otherwise homogeneous films. The proposed approach is compared with the results obtained on TiN films and nanopatterned arrays of weak-links, where the superconductor-insulator transition is directly stimulated.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2503677
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo