To each path of self-adjoint Fredholm operators acting on a real separable Hilbert space H with invertible ends, there is associated an integer called spectral flow. The purpose of this brief note is to show that spectral flow is uniquely characterized by four elementary properties: normalization, continuity, additivity over direct sums, and its value as the difference of the Morse indices of the ends when H is finite dimensional. The proof of uniqueness relies of the invarianceof spectral flow of the path under cogredient transformations of the path.

Uniqueness of spectral flow / Ciriza, E.; Fitzpatrick, P. M.; Pejsachowicz, Jacobo. - In: MATHEMATICAL AND COMPUTER MODELLING. - ISSN 0895-7177. - STAMPA. - 32:11-13(2000), pp. 1495-1501.

Uniqueness of spectral flow

PEJSACHOWICZ, JACOBO
2000

Abstract

To each path of self-adjoint Fredholm operators acting on a real separable Hilbert space H with invertible ends, there is associated an integer called spectral flow. The purpose of this brief note is to show that spectral flow is uniquely characterized by four elementary properties: normalization, continuity, additivity over direct sums, and its value as the difference of the Morse indices of the ends when H is finite dimensional. The proof of uniqueness relies of the invarianceof spectral flow of the path under cogredient transformations of the path.
File in questo prodotto:
File Dimensione Formato  
uniqnessofsflowmathemmodeling.pdf

non disponibili

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 606.16 kB
Formato Adobe PDF
606.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2499049
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo