Let G be the Lie group R^2xR^+ endowed with the Riemannian symmetric space structure. Let X_0, X_1, X_2 be a distinguished basis of left invariant vector fields of the Lie algebra of G and define the Laplacian L=-(X_0^2+X_1^2+X_2^2). In this paper, we show that the maximal function associated with the heat kernel of the Laplacian L is bounded from the Hardy space H^1 to L^1. We also prove that the heat maximal function does not provide a maximal characterization of the Hardy space H^1.
Heat maximal function on a Lie group of exponential growth / Sjogren, P.; Vallarino, Maria. - In: ANNALES ACADEMIAE SCIENTIARUM FENNICAE. MATHEMATICA. - ISSN 1239-629X. - STAMPA. - 37:(2012), pp. 491-507.
Heat maximal function on a Lie group of exponential growth
VALLARINO, MARIA
2012
Abstract
Let G be the Lie group R^2xR^+ endowed with the Riemannian symmetric space structure. Let X_0, X_1, X_2 be a distinguished basis of left invariant vector fields of the Lie algebra of G and define the Laplacian L=-(X_0^2+X_1^2+X_2^2). In this paper, we show that the maximal function associated with the heat kernel of the Laplacian L is bounded from the Hardy space H^1 to L^1. We also prove that the heat maximal function does not provide a maximal characterization of the Hardy space H^1.File | Dimensione | Formato | |
---|---|---|---|
sjogrenvallarino2012.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
535.99 kB
Formato
Adobe PDF
|
535.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2498438