Let G be the Lie group R^2xR^+ endowed with the Riemannian symmetric space structure. Let X_0, X_1, X_2 be a distinguished basis of left invariant vector fields of the Lie algebra of G and define the Laplacian L=-(X_0^2+X_1^2+X_2^2). In this paper, we show that the maximal function associated with the heat kernel of the Laplacian L is bounded from the Hardy space H^1 to L^1. We also prove that the heat maximal function does not provide a maximal characterization of the Hardy space H^1.
Heat maximal function on a Lie group of exponential growth / Sjogren, P.; Vallarino, Maria. - In: ANNALES ACADEMIAE SCIENTIARUM FENNICAE. MATHEMATICA. - ISSN 1239-629X. - STAMPA. - 37(2012), pp. 491-507.
Titolo: | Heat maximal function on a Lie group of exponential growth | |
Autori: | ||
Data di pubblicazione: | 2012 | |
Rivista: | ||
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
sjogrenvallarino2012.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia |
http://hdl.handle.net/11583/2498438